ECE374: Algorithms

Composite of Lecture and At-Home Study

Pradyun Narkadamilli

Contents
|1 General Reminders and Gotchasl 1
IZ General Overview{ 1
IB_Regular Langsuageé 1
B.1 GramINArS o o e o e i e e e e 2
3.2 Properties of Regular Languageé 2
3.3 Regular Expressiong o . e e 3
Iﬁl_Regular Automaté 3
1.1 DEAl . . e 3
1.2 NFA| . . L e 4
1.3 DFA/NFA /RegEx Equivalence{ 4
5
5
5
5.3 Closure Propertiesl .. 6
b Context-Free Languages{ 6
k Pushdown Automatd 6
E Mgorithmq 7
8.1 Divide and Conquetl o o oo 8
8.2 Dynamic Programming. e e e e e 8
E Graaha 9
0.1 Intrd e 9
0.2 Directed Graph . . oo 9
0.3 Shortest Path Algorithmg 11
0.4 Graph DP| e 11
10 Reductions 12
10.1 Complexity] . . - . - . o o o e 13
11 Decidability] 13

1 General Reminders and Gotchas

e Substrings and Subsequences - not the same thing!

2 General Overview

o Algorithm will have a runtime complexity (EXPSPACE, PSPACE, NP, co-NP)

Problems have a complexity class since they are never actually run

— Recursively enumerable (Turing Machines)

— Context-Sensitive (Linear bounded automata)

Context-free (Push-down Automata)
Regular (DFAs, NFAs, RegEx)

o Algorithm - step-by-step problem solving method

o Problem - some question we’d like answered given input (does input fulfill a property X)

3 Regular Languages

e Language - set of strings. Given an alphabet 3, we get a language that subsets >X* - the set of all
strings of all lengths including an empty string e (contains no symbols).

e A string over an alphabet is just a finite sequence of symbols

o () is the nullset, or empty set. Contains nothing (not even €)

 String concatenation expressed as adjacent symbols (either without an operator or with -)
— Associative, not commutative operator. € is the identity operand for this

o Subsequence - select set of characters from a string still in the same order. Do not need to be contiguous,
but need to be ordered.

— Ex: FES87 is a substring of FCE374
e Substring - similar to subsequence, but contiguity required.
o String exponent: For a string w we define it as follows:

—U)OZE

— w" = ww" !

o The complement of a language L on alphabet ¥ is written as L = ¥*\ L, or L = X* — L (set difference
from the full string set)

e Set Concatenation - forms a set with strings formed by every permutation of concatenation of the sets’
elements

— Mathematically: XY = {zy|z € X,y € Y}
e Set exponentiations have 3 forms:

— To the n € Z implies all strings of some fixed length
— To the * implies all strings of any finite length (Kleene star)

— To the 4+ implies all non-¢ strings

3.1 Grammars
e Grammar - set of rules defining the strings in a language
e Defining Grammars requires a quadruple G = (V, T, P, S)

— V is a finite set of non-terminal (variable) symbols - need to be substituted with a string composed
of symbols in T via a production p € P

— pis of the form A - afor Ae Vand « € (VUT)*

— We have a start symbol S, which is the starting symbol of the grammar

3.2 Properties of Regular Languages

o Kleene’s Theorem - A language is considered regular if it can be obtained from finite languages applying
the union, concatenation, and repetition operators a finite number of times.

— By extension: DFAs, NFAs, and RegExes all encompass the same class of languages
o Regular Languages can also be combined into more regular languages:

— The union and intersection of two regular languages is also regular
* Intersection can be proven via De Morgan’s Theorem
— The concatenation of two regular languages is regular
— For a regular language L, the language obtained with the Kleene star is also regular

— The complement of a regular language is regular
e Lemma: Every finite language L is regular
— Infinite languages can still be regular, like a Kleene star language
e Any language generated by a finite sequence of operations will be regular
— The Kleene star is considered a single operation
o Lemma: If you have many regular languages over an alphabet X, their union (U$°, L;) is not necessarily

regular

3.3 Regular Expressions
e Simple patterns used to describe related strings
e Regular expressions also have inductive cases

— Regular expressions can be union’d to represent a language
— Regular expressions can be concatenated to concatenate languages

— regular expressions can also have a Kleene star to represented that on a language
e Regular expressions denote regular languages showing the operations used to form the language

e Regular expressions are equivalent if they represent the same language

4 Regular Automata

4.1

4.2

DFA
Discrete Finite Automata (DFA) also called an FSM

— We say that each state has transitions coming out of it associated with a symbol %

— DFA has only one transition per state per symbol

A DFA accepts a string if the walk represented by the string produces a valid walk within the DFA
that ends on an "accepting” (or final) state

— The set of valid walks on a DFA M is represented as a language L(M) = {w|Macceptsw}
DFA is formally defined with a 5-component tuple

— @ - set of states

— 3 - input alphabet

— ¢ - transition function defined on Q X ¥ — @
— An initial state s € Q

— A set of accepting/final states A C @

We define a shorthand function §*(g,w) that evaluates the walk given by string w by recursively
evaluating ¢

Theorem: Languages accepted by DFAs are closed under complement
We can take the "union” of two DFAs by creating a cross-product machine

— Each state is the concatenation of the old states, and transition on a symbol will be to the correct
concatenation of old states

— Effectively evaluates 2 DFAs in parallel

DFAs effectively express the same set of languages as regular expressions

NFA

NFA - Non-deterministic Finite Automata.Theoretical device for having more than one output for the
same machine.

— Capable of taking multiple states concurrently - when a decision is given, the NFA takes both
paths and continues evaluating both branches concurrently

An NFA is capable of having multiple outgoing transitions on the same state for a single symbol

— Furthemore, we introduce ¢ transitions, which do not require any symbol to be taken (always
branched out into)

Due to the concurrency of an NFA | it is easier to show that the string is accepted than to show that it
is mot accepted

Formal Definition: an NFA is defined as a 5-tuple

— (@ is the finite set of states
— ¥ is the set of symbols this NFA accepts (input alphabet)

4.3

— ¢ is the transition function - this just got more complicated
* Defined on €, 0, and 1 inputs. Each output is now a set of states instead of a single state
— s is the start state

— A is the set of accepting, or "end” states

DFA /NFA /RegEx Equivalence

In the DFA — NFA direction, it is trivial - an NFA by default supports the same constraints that a
DFA does

— Simply convert the delta function to a set notation, and add e to the supported alphabet

To encompass any possible concurrency of state in an NFA, for an NFA with ||Q| = n, we can create a
DFA with at most 2" states and brute-force transitions into concurrent NFA meta-states (so to speak)

Regular Expressions can be constructed from a DFA by employing the state removal strategy

— Convert symbol-level transitions into string-level transitions, thereby removing intermediate states

— Attempt to condense the DFA until you have an accepting state with an expression for its self-loop
Regular expressions can also be directly constructed from an NFA

— We first normalize the NFA by adding epsilon-transitions from all accepting states to a singular
gy, then collapse all the epsilon transitions

— Use same analysis strategies as for a DFA to create a single transition from start state to end
state- this transition is the NFA regex

For mathematical equality, we require the inverse as well (RegEx — NFA/DFA)
RegEx can be converted to an NFA via Thompson’s Algorithm

— General idea is to correspond every operation in a RegEx to an NFA structure

— Concatenation — series connection

Union (4) — branching in NFA on e-transitions

Kleene Star — branch from start to next state - one branch is €, other branch is a DFA-esque
loop representing content of the repeated expression

RegEx can be converted to a DFA via Brzozowski’s Algorithm (wtf kind of last name is that)

— Incrementally convert prefix operation of the RegEx to a sub-DFA, then merge them via serial
connections

Non-Regularity

Until now, regular languages only encompass the regular class of Chomsky’s Computability Hierarchy
— Want to now expand to the contert-free computability class
Class of regular languages is countably infinite - set of all languages should be uncountably infinite

— Ex: L1 = {0"1"|n > 0} is non-regular - seems easy to construct, but you can’t come up with a
concatenation or union to form it!

— Presents an interesting precedent - non-regular languages can be a subset of a regular language

5.1

5.2

5.3

6

Proving Non-Regularity

Distinguishable States: Two states in a DFA are considered distinguishable if there is at least one string
w € ¥* that will form a path to only one of the two states

— Can extend definition to strings: distinguishable strings when z,y € ¥* and Jw € ¥* where only
one of zw, yw is in L(M)

Two strings equivalent on language L are denoted z ry
— The relation ; can partition a language L into equivalence classes

173 Review: An equivalence relation on some set A constructs an equivalence class [a] := {x € A|z A}
— These relations must be reflexive, symetric, and transitive

There are 3 big methods we can use to prove non-regularlity

— Fooling sets
— Closure properties

— Pumping lemma (not discussed in 374)

Fooling Sets

Fooling Set: also called a distinguishing set, this is a set for a language L where every two strings
x,y € F where x # y are distinguishable

— Theorem: Given a finite fooling set F' C L, there exists no DFA M accepting L with less than
|F'|| states

— Corrollary: If there is an infinite fooling set F' C L, then L is non-regular

Closure Properties

As discussed prior , there are some properties that regular languages will have when interacted with
other regular languages (concat, complement, etc.) - specifically that regularity is preserved

The general strategy here is to try to take known regular languages and combine them with some
unproven language L

Muyhill-Nerode Theorem: A language is regular if and only if there is a finite number of equivalence
classes

— This is an equivalent condition to requiring a finite fooling set - each element of the fooling set
represents an equivalence class

Context-Free Languages

Like regular languages, context-free languages can be defined by a context-free grammar (CFG)
— Uses the same four-tuple as regular languages

Derives relation: Given ai,as € (VUT)* for a CFG G, we say a1 ~» ag if there are intermediate
strings 8,7,0 € (V UT)* such that:

— ay = BAS

— ag = v where A - v € P

We describe a single-step derives above, where as directly derives from alpha,. We can also define this
relation inductively

—a; ~Yag if a1 =
— Qa1 sk [e%)) ifa1WB€Gand6wk’1 Q2
Context Free Languages: Given a CFG G, we construct the language L(G) := {w € T*|S ~* w}

— Interpreting the expression: Any w made of concatenated terminal symbols that can derive from
the start symbol

In regular languages, terminals can only appear on one side of the production string and only a single
variable is allowed in the result of a production - this is not true for a CFL

Much like RLs, CFLs are also closed under union, concatenation, and the Kleene star

Pushdown Automata

The key idea behind our CFGs and CFLs is that we want recursive definitions - to do so, we need stack

Pushdown Automata (PDA): The machine for CFGs - acts as an expansion on NFAs that can incor-
porate a stack

— Defined on a 6-tuple P = (Q, X, T',4, s, A)
x @Q,X, s, A retain their traditional definitions
x I' is a finite set called stack alphabet
* To incorporate the stack, the transition function delta : @ x LU{e} xT'U{e} — P(Qx (TU{e}))

For PDA, transition edges now denoted as a,b — ¢ where a € X,b€',ce T

— a is the input symbol

— b is the stack item that we pop (e.g we only take this transition if b is € or stack top is b)

c is the stack symbol we push

— Direction of the arrow denotes our destination state
The PDA is considered “complete” when we are in an accepting state and the stack is empty

— We can append a ”$” character to the stack at the very beginning of the PDA to denote the
bottom of the stack (e.g not ready for exit until we see this char again)

— The above acts as an explicit condition for enforcing stack emptiness

Algorithms

o Algorithm: a method to solve a specific problem

— We define a "problem” to simply be a function f going from one string to another on a finite
alphabet

— Its steps and instructions are primitive, and can be mechanically executed

— Must be finitely and universally describable (cannot have an infinite number of unpredictable
instructions)

8.1

— Is allowed to have state/memory (how else do you recurse bozo)
We consider a computer a mechanism that implements the primitive instructions for an algorithm
— It automates the execution of the algorithm, and keeps track of state

Model of Computation: an idealized mathematical construct that describes primitive instructions and
other details

— The computer implements one of many possible models of computation

— Examples: stochastic computing, standard programming model, Turing Machine model
Unit-Cost RAM Model: A simplified version of the standard programming model

— Basic data type is an integer number
— Numbers fit in a "word” of memory, and operating on words take constant time
— Arrays allow constant time random access to any word, and pointers fit in a word as well

— Assume bitwise functions, floor functions, and bounded word sizes are all restricted or disallowed
When analyzing algorithms, some big things we look out for

— Asymptotic worst-case runtime

— Asymptotic worst-case space usage
Reduction: map a problem A onto another problem B

— Positive direction of this is that an algorithm for B implies the existence of an algorithm for A

— Negative direction is that no good algorithm for A implies no good algorithm for B

Recursion acts a subcase of reduction, where a problem A can be mapped onto a smaller version of
itself

— FEz: the fibonacci sequence for a number N can be mapped onto the fibonacci sequence for N — 1
— Recursion terminates when the instance gets to a point where it can be trivially solved (base case)

— Ez Runtimes: Hanoi has a recursive solution in exponential time, Mergesort is nlog(n)

Backtracking: Traverse a search tree in a DFS-esque reucrsion pattern, then "backtrack” if an invalid
permutation is reached

— Keep recursing if there is another valid permutation reachable from the current point of recursion

Divide and Conquer
Consider QuickSort as an initial example
— Instead of binary split of Mergesort, we pick a "pivot” element (typically last or first element)

— Split array into 3 sub arrays - less than pivot, greater than pivot, and pivot

— Quicksort on each of the non-pivot subarrays, then concat (no iterated sort on coalesce)

8.2 Dynamic Programming

e As opposed to recursive algorithms, you can potentially cache results from past recursions to reuse
them in other parts of the recursion tree

e Two methods of memorizing values

— FEaxplicit: Initialize a fixed-memory hash table to store intermediate results

x Requires knowledge on number of potential sub-problems

x Can potentially reduce space complexity by saving results relevant to higher order computa-
tion, not all recursions

— Automatic: Use a hashmap to store results after computation, check if present before a potential
recursive call

e Finding recursions that can be efficiently memorized is called Dynamic Programming

— Summarized as a combination of smart recursion and explicit memorization
— Can lead to potentially polynomial time algorithms

— Does not necessarily need to be an iterative algorithm, but we prefer to remove recursion
e General Method for Dynamic Programming

— Find a recursive backtracking solution for some problem

Identify structure of subproblems, estimate number of subproblems

Rewrite subproblems more compactly

Rewrite rescursive algorithm in terms of subproblem notation

Solve subproblems bottom-up to convert recursion to iterative

Optimize with additional data structuers or ideas

9 Graphs
9.1 Intro

o Graphs represented as a two-tuple (V, E)

— V is the set of nodes/vertices, E is the set of edges

— Common representation between directed and undirected graphs, but the F is slightly different
o Edge between two nodes usually noted as a set {i,j}

— The tuple notation (i, 7) is reserved for directed edges

— For simple graphs, u # v for every {u,v} € F
o Each node has some degree, which is the number of nodes adjacent to it

— A node is adjacent to another if there is an edge connecting the two
— The set of nodes adjacent to some node a is called the neighborhood of a (Ng(a))

— Minimum degree and maximum degree of a graph are denoted §(G) and A(G)
e Various data structures can be used to encode information about graphs

— Adjacency Matriz: high space complexity (n?) but constant look up time for adjacency

Adjacency List: store the neighborhood of each node. Low space complexity, but adjacency check
may not be constant time

x Based on outgoing edges only for directed graphs

In this class, assume graphs are usually represented as unsorted adjacency lists

Two nodes are considered connected if a path can be formed from one to the other
x A cycle is formed if a node can form a path back to itself with a sequence of distict vertices
and edges
x The connectivity relation is reflexive, symmetric, and transitive

x Based on the above properties, connected components of a graph are equivalence classes of
the connectivity relation

x A connected graph will only have one connected component

e Connectivity criteria slightly more complex for directed graphs

We define rch(u) to be all the nodes reachable from u via directed paths
A node is strongly connected to another node if directed paths can be formed in both directions

The strong connectivity relation is reflexive, symmetric, and transitive - normal connectivity is
not

We find strongly connected components for directed graphs to be the equivalence classes

9.2 Directed Graphs

Source: No incoming edges

Sink: No outgoing edges

Directed Acyclic Graph: A directed graph is a DAG if there is no directed cycle

Every DAG has at least one source and at least one sink

Any directed graph with a topological ordering is a DAG

Want to be able to "order” the nodes in a directed graph

If nodes were ordered left-to right in topological order, all edges would point to the right

Can implement topological ordering (top sort) in O(m + n)

1.
2.
3.

Count in-degree of each node
For all sources, add node to out array and lower degree of connected nodes

Repeat step 2 until no more nodes left to order

Note that topsort is a partial order, not strict

Cannot topsort cyclical graphs

You know what a DFS is, here’s some more info

Runtime for a DFS is always O(m + n)
Output will be dependent on vertex ordering
The set of edges and nodes forming the search path is called the "forest” T

You will only have one incoming edge per node that is in T'

10

9.3

— Can tag each node with pre/post time (start and end time of its recursive call)

Note that for any two nodes u,v the intervals [pre(u), post(u)] and [pre(v),post(v)] either have a
containment relation or are disjoint

Can classify any edge of the graph G w.r.t the DFS tree

— Tree edges are in T

Forward edges are not in the DFS tree, but go to a node with a containment relation on times

Backward edges are not in DFS tree, but go to node with inverse containment relation on times

— Cross edges are not in DFS tree, but go to a node with disjoint pre/post times
Can use DFS to topsort and to do cycle detection on a directed graph

— While computing a topsort, if the sort fails we assume a cycle is found, and return it

— When computing DFS, any back edge indicates a cycle

If there is a cycle, return the path from u to v in 7" and then the back-edge

A DFS will inhrently compute the topological sorts if you linearize the search tree

— If post(v) > post(u), then no edge (u — v) exists
We can create a meta-graph of the strongly connected components in G by collapsing cycles

— Effectively, for a graph G, G°““ will have no cycles
— Each node in $GSCC is a strongly connected component

— This meta graph can be computed in O(m + n)

Shortest Path Algorithms

BFS is also O(m + n) - prefer this for distance exploration, DFS for graph structure exploration

— DF'S uses stack (recursion has this implicitly), BFS uses a queue (cannot be done recursively)
— BFS search has same completeness as DFS

— Is u reachable from s and (u — v) is an edge, then dist(v) < 1 + dist(u)
BF'S search tree can be represented as "layers”, where each layer represents a distance class

— Forward/backward edges would cause a jump between layers
— Tree edges will be in parallel to other forward edges

— Cross edges would be within the same layer
Path: sequence of distinct vertices where any two subsequent vertices have an edge v; — v;41

— The shortest path is determined by the smallest sum of edge weights

— BFS looks for fewest number of hops, but does not guarantee weight-sum optimality
Walk: simlar to path, but no constraint on distinct vertices

Djikstra’s: Max Verstappen CS edition made it up because he was board, and now you have to learn
it

— Source node takes a distance of 0, all others assumed to be oo until explored

11

— At each iteration, take the "unsettled” node with the smallest distance estimate, and explore its
neighbors

— For each explored neighbor, update distance estimate and log the ”previous node” associated with
estimate

— Add the iterated node into the settled list

— Once all nodes are settled, we have shortest distance (and path) from s to any v € V
e Runs in O(m + n?) - n iterations of n to select min-cost node, and m to explore every possible edge
o Runtime can be reduced to O(m+nlog(n)) or O((m+n)log(n) via priority queues or Fibonacci heaps

e Djikstra’s should be run on G™¢" if we want closest distance from all V' to s

9.4 Graph DP

e Djikstra’s assumes that we can ignore a path completely if the partial’s cost exceeds the true length
of another partial

— This assumption becomes false if we have negative edge lengths

— Normalized addition is bad because the additive correction is multiplicative over edge count
e Bellman-Ford: Finds the minimum cost path

— Maintain a counter for number of edges used - can be at most n — 1 on a path

Recursive formulation will brute force potential edges and take the minimum, or just burn an
edge in the counter

DP solution brute forces the discrete possibilities: minimizing cost at each node with at most k
edges to use up

* O(mn) DP solution possible with O(n) memory complexity

x Iterate over all edges n — 1 times to generate the minimum cost of any node in the graph to
s in under n edge path

— Check if there is any extra minimization on an n-th iteration to see if there is a negative cycle

e Can use a topsort and then a simple iteration over edges to pull out the minimum distance from s to
every other node in O(m + n) if the graph is a DAG

e Floyd-Warshall: Generate all-pairs shortest paths

— Djikstra’s only accounts for a single start node, so pulling all-pairs would be O(nm + n?log(n))
— Floyd-Warshall iterates over every pair and gradually allows more and more intermediate nodes
— Runs in O(n?) with space O(n?)

10 Reductions

o Reductions used for two big reasons

— Determining if a problem has a more efficient algorithm

— Determining if a problem has no algorithm

e Can map down most problems onto another fundamental problem that someone smarter than us has
already established the computational hardness of

12

— If the core problem is unsolveable, then we end up having conditional results on our new problem

— Usually limit attention to decision problems when proving hardness (boolean functions on some
%)

We form reductions as an algorithm mapping one problem’s instance onto another as to form a
bijection

Classic example: An algorithm to find a ”clique” of size k in a graph can trivially be reduced down to
the algorithm to find an independent set of size k

— Your reduction step is inverting each element in the adjacency matrix, effectively

— Reduction is additive to the other algorithm’s runtime, and change in input size needs to be
accounted

Note that not every reduction will be efficient by default - example is NFA onto DFA reduction

— An algorithm known to be PSPACE on the DFA can suddenly turn into an exponential NFA algo
— As a result, we are mainly interested in polynomial-time reduction steps (e.g Karp reductions)

— On Karp reductions, we know that if Y is polynomial and X <p Y, then X is polynomial
Conjuctive Normal Form: POS-form formula built on literals (boolean variable or its complement)
— A formula ¢ is a CNF where each sum clause has exactly 3 different literals
We construct the SAT problem where we inputs to make an arbitrary CNF hold true

— We construct the 3SAT problem for ¢ compliant CNFs in particular
— SAT is short for satisfaction or satisfiability

10.1 Complexity

e We can partition all problems into a couple of fundamental complexity classes

— P problems are polynomial time

— P is encapsulated by PSPACE, which spans all problems solveable by a Turing Machine in poly-
nomial space

— EXPTIME encapsulates PSPACE, and denotes all problems solveable by a Turing Machine in
exponential time

— EXPSPACE is solvable with exponential space by a Turing Machine, encapsulates EXPTIME

e Within the space of PSPACE, we define two new complexity classes

— NP encapsulates P but is within the bounds of PSPACE

* It is solved by a non-det turing machine in O(n) to return a YES (SAT, 3SAT, factorization)
— coNP overlaps NP partiall and also encapsulates P within PSPACE - it

% Solved by an NTM in O(n) to check NO instances (inverse SAT, clique/independent set)

e NP-hard problems encapsulate NP and coNP problems while potentially being undecidable

— An prroblem is undecideable if there is no algorithm to solve it
— These problems are at least as hard as the hardest problems in NP

— The problems overlapping NP and NP-hard are NP-complete - all NP problems can reduce to
these

13

11

What is NP?: NP is a set of decision problems with nondeterministic polynomial time algorithms

— They are guaranteed to have exponential time algorithms, and are a superset of P

— Nondeterministic computers can take both paths for any decision in a decision tree (NFA but
computer)

A problem is considered NP-Complete if every other NP problem can be reduced onto it

— It’s generally believed that P # N P, but solving an NP-complete problem would imply equality
— Thus NP problems are usually unlikely to be solved efficiently (need to be brute forced)

Classic NP-Complete Problems

— Hamiltonian Path
— 3-Coloring
— 3Sat

x Can be mapped onto both 3-Coloring and Hamiltonian Path
x 3-Coloring map basically forms ”gates” with graph color induction

Decidability

Cantor’s Diagonalization Argument: Shows countability of a set

— Should be able to systematically list out the elements of a set, even if it’s infinite

— R is famously not countable
Set of all possible languages is uncountable
Set of all programs is... countable???

— Some languages... cannot be represented by a Turing Machine

— These languages are undecidable

A recursively enumerable language (RE) is the language representation of some Turing machine
— shitty - undecidable, may not halt on negative

A decidable language is the language representation of a Turing machine that halts on all inputs
— not shitty - decidable, always gives an accept/rejection

Halting Problem: Given a program @, will it stop?

Halting Theorem: No program can deterministically stop while solving the halting problem

Decider: A program (TM) for a language that always stops, and outputs acceptance/rejection for any
possible input string

— Turing machine on top of a TM!

— A language with a decider is decidable

Recognizable Languages: There exists a TM such that it stops on enough inputs such that L(M) =L
for the recognizable language L

14

— If a language and its complement are both recognizable, then both languages are decidable (re-
jection and acceptance are both halting)

Oracle: yes/no function returning whether w € L for some language L, with w as the problem instance

— A language X reduces to another language Y if we can form a decider given an oracle for Y
—e.g X =Y -ifY decidable, then X decidable (contrapositive is also true)

— Can prove language undecidability by reducing a known undecidable problem w/ a decider for YV’
Undecidable Languages To Remember

— These languages are of pairs of a machine and an input
— Arpy = {(M,w)|M is a TM and M accepts w}
— Aparr = {{(M,w)|M is a TM and M stops on w}

The language of empty DFAs is decidable - can be determined via a BFS/DFS effectively
— DFA equivalency is also decidable!

Most properties defining a TM language will end up being undecidable

Rice’s Theorem: If L is a language consisting of Turing machines:

— If membership is solely dependent on L(M) for a machine M
— And if the set L # () and L does not contain every TM

— L must be undecidable

15

	General Reminders and Gotchas
	General Overview
	Regular Languages
	Grammars
	Properties of Regular Languages
	Regular Expressions

	Regular Automata
	DFA
	NFA
	DFA/NFA/RegEx Equivalence

	Non-Regularity
	Proving Non-Regularity
	Fooling Sets
	Closure Properties

	Context-Free Languages
	Pushdown Automata
	Algorithms
	Divide and Conquer
	Dynamic Programming

	Graphs
	Intro
	Directed Graphs
	Shortest Path Algorithms
	Graph DP

	Reductions
	Complexity

	Decidability

