
ECE374: Algorithms
Composite of Lecture and At-Home Study

Pradyun Narkadamilli

Contents
1 General Reminders and Gotchas 1

2 General Overview 1

3 Regular Languages 1
3.1 Grammars . 2
3.2 Properties of Regular Languages . 2
3.3 Regular Expressions . 3

4 Regular Automata 3
4.1 DFA . 3
4.2 NFA . 4
4.3 DFA/NFA/RegEx Equivalence . 4

5 Non-Regularity 5
5.1 Proving Non-Regularity . 5
5.2 Fooling Sets . 5
5.3 Closure Properties . 6

6 Context-Free Languages 6

7 Pushdown Automata 6

8 Algorithms 7
8.1 Divide and Conquer . 8
8.2 Dynamic Programming . 8

9 Graphs 9
9.1 Intro . 9
9.2 Directed Graphs . 9
9.3 Shortest Path Algorithms . 11
9.4 Graph DP . 11

10 Reductions 12
10.1 Complexity . 13

11 Decidability 13

1

1 General Reminders and Gotchas
• Substrings and Subsequences - not the same thing!

2 General Overview
• Algorithm will have a runtime complexity (EXPSPACE, PSPACE, NP, co–NP)

• Problems have a complexity class since they are never actually run

– Recursively enumerable (Turing Machines)
– Context-Sensitive (Linear bounded automata)
– Context-free (Push-down Automata)
– Regular (DFAs, NFAs, RegEx)

• Algorithm - step-by-step problem solving method

• Problem - some question we’d like answered given input (does input fulfill a property X)

3 Regular Languages
• Language - set of strings. Given an alphabet Σ, we get a language that subsets Σ∗ - the set of all

strings of all lengths including an empty string ϵ (contains no symbols).

• A string over an alphabet is just a finite sequence of symbols

• ∅ is the nullset, or empty set. Contains nothing (not even ϵ)

• String concatenation expressed as adjacent symbols (either without an operator or with ·)

– Associative, not commutative operator. ϵ is the identity operand for this

• Subsequence - select set of characters from a string still in the same order. Do not need to be contiguous,
but need to be ordered.

– Ex: EE37 is a substring of ECE374

• Substring - similar to subsequence, but contiguity required.

• String exponent: For a string w we define it as follows:

– w0 = ϵ

– wn = wwn−1

• The complement of a language L on alphabet Σ is written as L = Σ∗ \L, or L = Σ∗−L (set difference
from the full string set)

• Set Concatenation - forms a set with strings formed by every permutation of concatenation of the sets’
elements

– Mathematically: XY = {xy|x ∈ X, y ∈ Y }

• Set exponentiations have 3 forms:

– To the n ∈ Z implies all strings of some fixed length
– To the ∗ implies all strings of any finite length (Kleene star)
– To the + implies all non-ϵ strings

2

3.1 Grammars
• Grammar - set of rules defining the strings in a language

• Defining Grammars requires a quadruple G = (V, T, P, S)

– V is a finite set of non-terminal (variable) symbols - need to be substituted with a string composed
of symbols in T via a production p ∈ P

– p is of the form A → α for A ∈ V and α ∈ (V ∪ T)∗

– We have a start symbol S, which is the starting symbol of the grammar

3.2 Properties of Regular Languages
• Kleene’s Theorem - A language is considered regular if it can be obtained from finite languages applying

the union, concatenation, and repetition operators a finite number of times.

– By extension: DFAs, NFAs, and RegExes all encompass the same class of languages

• Regular Languages can also be combined into more regular languages:

– The union and intersection of two regular languages is also regular
∗ Intersection can be proven via De Morgan’s Theorem

– The concatenation of two regular languages is regular
– For a regular language L, the language obtained with the Kleene star is also regular
– The complement of a regular language is regular

• Lemma: Every finite language L is regular

– Infinite languages can still be regular, like a Kleene star language

• Any language generated by a finite sequence of operations will be regular

– The Kleene star is considered a single operation

• Lemma: If you have many regular languages over an alphabet Σ, their union (∪∞
i=1Li) is not necessarily

regular

3.3 Regular Expressions
• Simple patterns used to describe related strings

• Regular expressions also have inductive cases

– Regular expressions can be union’d to represent a language
– Regular expressions can be concatenated to concatenate languages
– regular expressions can also have a Kleene star to represented that on a language

• Regular expressions denote regular languages showing the operations used to form the language

• Regular expressions are equivalent if they represent the same language

3

4 Regular Automata
4.1 DFA

• Discrete Finite Automata (DFA) also called an FSM

– We say that each state has transitions coming out of it associated with a symbol Σ
– DFA has only one transition per state per symbol

• A DFA accepts a string if the walk represented by the string produces a valid walk within the DFA
that ends on an ”accepting” (or final) state

– The set of valid walks on a DFA M is represented as a language L(M) = {w|Macceptsw}

• DFA is formally defined with a 5-component tuple

– Q - set of states
– Σ - input alphabet
– δ - transition function defined on Q× Σ → Q

– An initial state s ∈ Q

– A set of accepting/final states A ⊆ Q

• We define a shorthand function δ∗(q, w) that evaluates the walk given by string w by recursively
evaluating δ

• Theorem: Languages accepted by DFAs are closed under complement

• We can take the ”union” of two DFAs by creating a cross-product machine

– Each state is the concatenation of the old states, and transition on a symbol will be to the correct
concatenation of old states

– Effectively evaluates 2 DFAs in parallel

• DFAs effectively express the same set of languages as regular expressions

4.2 NFA
• NFA - Non-deterministic Finite Automata.Theoretical device for having more than one output for the

same machine.

– Capable of taking multiple states concurrently - when a decision is given, the NFA takes both
paths and continues evaluating both branches concurrently

• An NFA is capable of having multiple outgoing transitions on the same state for a single symbol

– Furthemore, we introduce ϵ transitions, which do not require any symbol to be taken (always
branched out into)

• Due to the concurrency of an NFA, it is easier to show that the string is accepted than to show that it
is not accepted

• Formal Definition: an NFA is defined as a 5-tuple

– Q is the finite set of states
– Σ is the set of symbols this NFA accepts (input alphabet)

4

– δ is the transition function - this just got more complicated
∗ Defined on ϵ, 0, and 1 inputs. Each output is now a set of states instead of a single state

– s is the start state
– A is the set of accepting, or ”end” states

4.3 DFA/NFA/RegEx Equivalence
• In the DFA → NFA direction, it is trivial - an NFA by default supports the same constraints that a

DFA does

– Simply convert the delta function to a set notation, and add ϵ to the supported alphabet

• To encompass any possible concurrency of state in an NFA, for an NFA with ∥Q∥ = n, we can create a
DFA with at most 2n states and brute-force transitions into concurrent NFA meta-states (so to speak)

• Regular Expressions can be constructed from a DFA by employing the state removal strategy

– Convert symbol-level transitions into string-level transitions, thereby removing intermediate states
– Attempt to condense the DFA until you have an accepting state with an expression for its self-loop

• Regular expressions can also be directly constructed from an NFA

– We first normalize the NFA by adding epsilon-transitions from all accepting states to a singular
qf , then collapse all the epsilon transitions

– Use same analysis strategies as for a DFA to create a single transition from start state to end
state- this transition is the NFA regex

• For mathematical equality, we require the inverse as well (RegEx → NFA/DFA)

• RegEx can be converted to an NFA via Thompson’s Algorithm

– General idea is to correspond every operation in a RegEx to an NFA structure
– Concatenation → series connection
– Union (+) → branching in NFA on $ϵ$-transitions
– Kleene Star → branch from start to next state - one branch is ϵ, other branch is a DFA-esque

loop representing content of the repeated expression

• RegEx can be converted to a DFA via Brzozowski’s Algorithm (wtf kind of last name is that)

– Incrementally convert prefix operation of the RegEx to a sub-DFA, then merge them via serial
connections

5 Non-Regularity
• Until now, regular languages only encompass the regular class of Chomsky’s Computability Hierarchy

– Want to now expand to the context-free computability class

• Class of regular languages is countably infinite - set of all languages should be uncountably infinite

– Ex: L1 = {0n1n|n ≥ 0} is non-regular - seems easy to construct, but you can’t come up with a
concatenation or union to form it!

– Presents an interesting precedent - non-regular languages can be a subset of a regular language

5

5.1 Proving Non-Regularity
• Distinguishable States: Two states in a DFA are considered distinguishable if there is at least one string

w ∈ Σ∗ that will form a path to only one of the two states

– Can extend definition to strings: distinguishable strings when x, y ∈ Σ∗ and ∃w ∈ Σ∗ where only
one of xw, yw is in L(M)

• Two strings equivalent on language L are denoted x Ly

– The relation L can partition a language L into equivalence classes

• 173 Review: An equivalence relation on some set A constructs an equivalence class [a] := {x ∈ A|x A}

– These relations must be reflexive, symetric, and transitive

• There are 3 big methods we can use to prove non-regularlity

– Fooling sets
– Closure properties
– Pumping lemma (not discussed in 374)

5.2 Fooling Sets
• Fooling Set: also called a distinguishing set, this is a set for a language L where every two strings

x, y ∈ F where x ̸= y are distinguishable

– Theorem: Given a finite fooling set F ⊆ L, there exists no DFA M accepting L with less than
∥F∥ states

– Corrollary: If there is an infinite fooling set F ⊆ L, then L is non-regular

5.3 Closure Properties
• As discussed prior , there are some properties that regular languages will have when interacted with

other regular languages (concat, complement, etc.) - specifically that regularity is preserved

• The general strategy here is to try to take known regular languages and combine them with some
unproven language L

• Myhill-Nerode Theorem: A language is regular if and only if there is a finite number of equivalence
classes

– This is an equivalent condition to requiring a finite fooling set - each element of the fooling set
represents an equivalence class

6 Context-Free Languages
• Like regular languages, context-free languages can be defined by a context-free grammar (CFG)

– Uses the same four-tuple as regular languages

• Derives relation: Given α1, α2 ∈ (V ∪ T)∗ for a CFG G, we say α1 ⇝ α2 if there are intermediate
strings β, γ, δ ∈ (V ∪ T)∗ such that:

– α1 = βAδ

6

– α2 = βγδ where A → γ ∈ P

• We describe a single-step derives above, where α2 directly derives from alpha1. We can also define this
relation inductively

– α1 ⇝0 α2 if α1 = α2

– α1 ⇝k α2 if α1 ⇝ β ∈ G and β ⇝k−1 α2

• Context Free Languages: Given a CFG G, we construct the language L(G) := {w ∈ T ∗|S ⇝∗ w}

– Interpreting the expression: Any w made of concatenated terminal symbols that can derive from
the start symbol

• In regular languages, terminals can only appear on one side of the production string and only a single
variable is allowed in the result of a production - this is not true for a CFL

• Much like RLs, CFLs are also closed under union, concatenation, and the Kleene star

7 Pushdown Automata
• The key idea behind our CFGs and CFLs is that we want recursive definitions - to do so, we need stack

• Pushdown Automata (PDA): The machine for CFGs - acts as an expansion on NFAs that can incor-
porate a stack

– Defined on a 6-tuple P = (Q,Σ,Γ, δ, s, A)

∗ Q,Σ, s, A retain their traditional definitions
∗ Γ is a finite set called stack alphabet
∗ To incorporate the stack, the transition function delta : Q×Σ∪{ϵ}×Γ∪{ϵ} → P(Q×(Γ∪{ϵ}))

• For PDA, transition edges now denoted as a, b → c where a ∈ Σ, b ∈ Γ, c ∈ Γ

– a is the input symbol
– b is the stack item that we pop (e.g we only take this transition if b is ϵ or stack top is b)
– c is the stack symbol we push
– Direction of the arrow denotes our destination state

• The PDA is considered ”complete” when we are in an accepting state and the stack is empty

– We can append a ”$” character to the stack at the very beginning of the PDA to denote the
bottom of the stack (e.g not ready for exit until we see this char again)

– The above acts as an explicit condition for enforcing stack emptiness

8 Algorithms
• Algorithm: a method to solve a specific problem

– We define a ”problem” to simply be a function f going from one string to another on a finite
alphabet

– Its steps and instructions are primitive, and can be mechanically executed
– Must be finitely and universally describable (cannot have an infinite number of unpredictable

instructions)

7

– Is allowed to have state/memory (how else do you recurse bozo)

• We consider a computer a mechanism that implements the primitive instructions for an algorithm

– It automates the execution of the algorithm, and keeps track of state

• Model of Computation: an idealized mathematical construct that describes primitive instructions and
other details

– The computer implements one of many possible models of computation
– Examples: stochastic computing, standard programming model, Turing Machine model

• Unit-Cost RAM Model: A simplified version of the standard programming model

– Basic data type is an integer number
– Numbers fit in a ”word” of memory, and operating on words take constant time
– Arrays allow constant time random access to any word, and pointers fit in a word as well
– Assume bitwise functions, floor functions, and bounded word sizes are all restricted or disallowed

• When analyzing algorithms, some big things we look out for

– Asymptotic worst-case runtime
– Asymptotic worst-case space usage

• Reduction: map a problem A onto another problem B

– Positive direction of this is that an algorithm for B implies the existence of an algorithm for A
– Negative direction is that no good algorithm for A implies no good algorithm for B

• Recursion acts a subcase of reduction, where a problem A can be mapped onto a smaller version of
itself

– Ex: the fibonacci sequence for a number N can be mapped onto the fibonacci sequence for N − 1

– Recursion terminates when the instance gets to a point where it can be trivially solved (base case)
– Ex Runtimes: Hanoi has a recursive solution in exponential time, Mergesort is n log(n)

• Backtracking: Traverse a search tree in a DFS-esque reucrsion pattern, then ”backtrack” if an invalid
permutation is reached

– Keep recursing if there is another valid permutation reachable from the current point of recursion

8.1 Divide and Conquer
• Consider QuickSort as an initial example

– Instead of binary split of Mergesort, we pick a ”pivot” element (typically last or first element)
– Split array into 3 sub arrays - less than pivot, greater than pivot, and pivot
– Quicksort on each of the non-pivot subarrays, then concat (no iterated sort on coalesce)

8

8.2 Dynamic Programming
• As opposed to recursive algorithms, you can potentially cache results from past recursions to reuse

them in other parts of the recursion tree

• Two methods of memorizing values

– Explicit: Initialize a fixed-memory hash table to store intermediate results
∗ Requires knowledge on number of potential sub-problems
∗ Can potentially reduce space complexity by saving results relevant to higher order computa-

tion, not all recursions
– Automatic: Use a hashmap to store results after computation, check if present before a potential

recursive call

• Finding recursions that can be efficiently memorized is called Dynamic Programming

– Summarized as a combination of smart recursion and explicit memorization
– Can lead to potentially polynomial time algorithms
– Does not necessarily need to be an iterative algorithm, but we prefer to remove recursion

• General Method for Dynamic Programming

– Find a recursive backtracking solution for some problem
– Identify structure of subproblems, estimate number of subproblems
– Rewrite subproblems more compactly
– Rewrite rescursive algorithm in terms of subproblem notation
– Solve subproblems bottom-up to convert recursion to iterative
– Optimize with additional data structuers or ideas

9 Graphs
9.1 Intro

• Graphs represented as a two-tuple (V,E)

– V is the set of nodes/vertices, E is the set of edges
– Common representation between directed and undirected graphs, but the E is slightly different

• Edge between two nodes usually noted as a set {i, j}

– The tuple notation (i, j) is reserved for directed edges
– For simple graphs, u ̸= v for every {u, v} ∈ E

• Each node has some degree, which is the number of nodes adjacent to it

– A node is adjacent to another if there is an edge connecting the two
– The set of nodes adjacent to some node a is called the neighborhood of a (NG(a))
– Minimum degree and maximum degree of a graph are denoted δ(G) and ∆(G)

• Various data structures can be used to encode information about graphs

– Adjacency Matrix: high space complexity (n2) but constant look up time for adjacency

9

– Adjacency List: store the neighborhood of each node. Low space complexity, but adjacency check
may not be constant time

∗ Based on outgoing edges only for directed graphs
– In this class, assume graphs are usually represented as unsorted adjacency lists

– Two nodes are considered connected if a path can be formed from one to the other
∗ A cycle is formed if a node can form a path back to itself with a sequence of distict vertices

and edges
∗ The connectivity relation is reflexive, symmetric, and transitive
∗ Based on the above properties, connected components of a graph are equivalence classes of

the connectivity relation
∗ A connected graph will only have one connected component

• Connectivity criteria slightly more complex for directed graphs

– We define rch(u) to be all the nodes reachable from u via directed paths
– A node is strongly connected to another node if directed paths can be formed in both directions
– The strong connectivity relation is reflexive, symmetric, and transitive - normal connectivity is

not
– We find strongly connected components for directed graphs to be the equivalence classes

9.2 Directed Graphs
• Source: No incoming edges

• Sink: No outgoing edges

• Directed Acyclic Graph: A directed graph is a DAG if there is no directed cycle

– Every DAG has at least one source and at least one sink
– Any directed graph with a topological ordering is a DAG

• Want to be able to ”order” the nodes in a directed graph

– If nodes were ordered left-to right in topological order, all edges would point to the right

• Can implement topological ordering (top sort) in O(m+ n)

1. Count in-degree of each node
2. For all sources, add node to out array and lower degree of connected nodes
3. Repeat step 2 until no more nodes left to order

• Note that topsort is a partial order, not strict

– Cannot topsort cyclical graphs

• You know what a DFS is, here’s some more info

– Runtime for a DFS is always O(m+ n)

– Output will be dependent on vertex ordering
– The set of edges and nodes forming the search path is called the ”forest” T

– You will only have one incoming edge per node that is in T

10

– Can tag each node with pre/post time (start and end time of its recursive call)

• Note that for any two nodes u, v the intervals [pre(u), post(u)] and [pre(v), post(v)] either have a
containment relation or are disjoint

• Can classify any edge of the graph G w.r.t the DFS tree

– Tree edges are in T

– Forward edges are not in the DFS tree, but go to a node with a containment relation on times
– Backward edges are not in DFS tree, but go to node with inverse containment relation on times
– Cross edges are not in DFS tree, but go to a node with disjoint pre/post times

• Can use DFS to topsort and to do cycle detection on a directed graph

– While computing a topsort, if the sort fails we assume a cycle is found, and return it
– When computing DFS, any back edge indicates a cycle
– If there is a cycle, return the path from u to v in T and then the back-edge
– A DFS will inhrently compute the topological sorts if you linearize the search tree
– If post(v) > post(u), then no edge (u → v) exists

• We can create a meta-graph of the strongly connected components in G by collapsing cycles

– Effectively, for a graph G, GSCC will have no cycles
– Each node in $GSCC is a strongly connected component
– This meta graph can be computed in O(m+ n)

9.3 Shortest Path Algorithms
• BFS is also O(m+ n) - prefer this for distance exploration, DFS for graph structure exploration

– DFS uses stack (recursion has this implicitly), BFS uses a queue (cannot be done recursively)
– BFS search has same completeness as DFS
– Is u reachable from s and (u → v) is an edge, then dist(v) ≤ 1 + dist(u)

• BFS search tree can be represented as ”layers”, where each layer represents a distance class

– Forward/backward edges would cause a jump between layers
– Tree edges will be in parallel to other forward edges
– Cross edges would be within the same layer

• Path: sequence of distinct vertices where any two subsequent vertices have an edge vi → vi+1

– The shortest path is determined by the smallest sum of edge weights
– BFS looks for fewest number of hops, but does not guarantee weight-sum optimality

• Walk: simlar to path, but no constraint on distinct vertices

• Djikstra’s: Max Verstappen CS edition made it up because he was board, and now you have to learn
it

– Source node takes a distance of 0, all others assumed to be ∞ until explored

11

– At each iteration, take the ”unsettled” node with the smallest distance estimate, and explore its
neighbors

– For each explored neighbor, update distance estimate and log the ”previous node” associated with
estimate

– Add the iterated node into the settled list
– Once all nodes are settled, we have shortest distance (and path) from s to any v ∈ V

• Runs in O(m+ n2) - n iterations of n to select min-cost node, and m to explore every possible edge

• Runtime can be reduced to O(m+n log(n)) or O((m+n) log(n) via priority queues or Fibonacci heaps

• Djikstra’s should be run on Grev if we want closest distance from all V to s

9.4 Graph DP
• Djikstra’s assumes that we can ignore a path completely if the partial’s cost exceeds the true length

of another partial

– This assumption becomes false if we have negative edge lengths
– Normalized addition is bad because the additive correction is multiplicative over edge count

• Bellman-Ford: Finds the minimum cost path

– Maintain a counter for number of edges used - can be at most n− 1 on a path
– Recursive formulation will brute force potential edges and take the minimum, or just burn an

edge in the counter
– DP solution brute forces the discrete possibilities: minimizing cost at each node with at most k

edges to use up
∗ O(mn) DP solution possible with O(n) memory complexity
∗ Iterate over all edges n− 1 times to generate the minimum cost of any node in the graph to
s in under n edge path

– Check if there is any extra minimization on an n-th iteration to see if there is a negative cycle

• Can use a topsort and then a simple iteration over edges to pull out the minimum distance from s to
every other node in O(m+ n) if the graph is a DAG

• Floyd-Warshall: Generate all-pairs shortest paths

– Djikstra’s only accounts for a single start node, so pulling all-pairs would be O(nm+ n2 log(n))

– Floyd-Warshall iterates over every pair and gradually allows more and more intermediate nodes
– Runs in O(n3) with space O(n3)

10 Reductions
• Reductions used for two big reasons

– Determining if a problem has a more efficient algorithm
– Determining if a problem has no algorithm

• Can map down most problems onto another fundamental problem that someone smarter than us has
already established the computational hardness of

12

– If the core problem is unsolveable, then we end up having conditional results on our new problem
– Usually limit attention to decision problems when proving hardness (boolean functions on some

Σ∗)

• We form reductions as an algorithm mapping one problem’s instance onto another as to form a
bijection

• Classic example: An algorithm to find a ”clique” of size k in a graph can trivially be reduced down to
the algorithm to find an independent set of size k

– Your reduction step is inverting each element in the adjacency matrix, effectively
– Reduction is additive to the other algorithm’s runtime, and change in input size needs to be

accounted

• Note that not every reduction will be efficient by default - example is NFA onto DFA reduction

– An algorithm known to be PSPACE on the DFA can suddenly turn into an exponential NFA algo
– As a result, we are mainly interested in polynomial-time reduction steps (e.g Karp reductions)
– On Karp reductions, we know that if Y is polynomial and X ≤P Y , then X is polynomial

• Conjuctive Normal Form: POS-form formula built on literals (boolean variable or its complement)

– A formula φ is a CNF where each sum clause has exactly 3 different literals

• We construct the SAT problem where we inputs to make an arbitrary CNF hold true

– We construct the 3SAT problem for φ compliant CNFs in particular
– SAT is short for satisfaction or satisfiability

10.1 Complexity
• We can partition all problems into a couple of fundamental complexity classes

– P problems are polynomial time
– P is encapsulated by PSPACE, which spans all problems solveable by a Turing Machine in poly-

nomial space
– EXPTIME encapsulates PSPACE, and denotes all problems solveable by a Turing Machine in

exponential time
– EXPSPACE is solvable with exponential space by a Turing Machine, encapsulates EXPTIME

• Within the space of PSPACE, we define two new complexity classes

– NP encapsulates P but is within the bounds of PSPACE
∗ It is solved by a non-det turing machine in O(n) to return a YES (SAT, 3SAT, factorization)

– coNP overlaps NP partiall and also encapsulates P within PSPACE - it
∗ Solved by an NTM in O(n) to check NO instances (inverse SAT, clique/independent set)

• NP-hard problems encapsulate NP and coNP problems while potentially being undecidable

– An prroblem is undecideable if there is no algorithm to solve it
– These problems are at least as hard as the hardest problems in NP
– The problems overlapping NP and NP-hard are NP-complete - all NP problems can reduce to

these

13

• What is NP?: NP is a set of decision problems with nondeterministic polynomial time algorithms

– They are guaranteed to have exponential time algorithms, and are a superset of P
– Nondeterministic computers can take both paths for any decision in a decision tree (NFA but

computer)

• A problem is considered NP-Complete if every other NP problem can be reduced onto it

– It’s generally believed that P ̸= NP , but solving an NP-complete problem would imply equality
– Thus NP problems are usually unlikely to be solved efficiently (need to be brute forced)

• Classic NP-Complete Problems

– Hamiltonian Path
– 3-Coloring
– 3Sat

∗ Can be mapped onto both 3-Coloring and Hamiltonian Path
∗ 3-Coloring map basically forms ”gates” with graph color induction

11 Decidability
• Cantor’s Diagonalization Argument: Shows countability of a set

– Should be able to systematically list out the elements of a set, even if it’s infinite
– R is famously not countable

• Set of all possible languages is uncountable

• Set of all programs is… countable???

– Some languages… cannot be represented by a Turing Machine
– These languages are undecidable

• A recursively enumerable language (RE) is the language representation of some Turing machine

– shitty - undecidable, may not halt on negative

• A decidable language is the language representation of a Turing machine that halts on all inputs

– not shitty - decidable, always gives an accept/rejection

• Halting Problem: Given a program Q, will it stop?

• Halting Theorem: No program can deterministically stop while solving the halting problem

• Decider: A program (TM) for a language that always stops, and outputs acceptance/rejection for any
possible input string

– Turing machine on top of a TM!
– A language with a decider is decidable

• Recognizable Languages: There exists a TM such that it stops on enough inputs such that L(M) = L
for the recognizable language L

14

– If a language and its complement are both recognizable, then both languages are decidable (re-
jection and acceptance are both halting)

• Oracle: yes/no function returning whether w ∈ L for some language L, with w as the problem instance

– A language X reduces to another language Y if we can form a decider given an oracle for Y
– e.g X ⇒ Y - if Y decidable, then X decidable (contrapositive is also true)
– Can prove language undecidability by reducing a known undecidable problem w/ a decider for Y

• Undecidable Languages To Remember

– These languages are of pairs of a machine and an input
– ATM = {⟨M,w⟩|M is a TM and M accepts w}
– Ahalt = {⟨M,w⟩|M is a TM and M stops on w}

• The language of empty DFAs is decidable - can be determined via a BFS/DFS effectively

– DFA equivalency is also decidable!

• Most properties defining a TM language will end up being undecidable

• Rice’s Theorem: If L is a language consisting of Turing machines:

– If membership is solely dependent on L(M) for a machine M

– And if the set L ̸= ∅ and L does not contain every TM
– L must be undecidable

15

	General Reminders and Gotchas
	General Overview
	Regular Languages
	Grammars
	Properties of Regular Languages
	Regular Expressions

	Regular Automata
	DFA
	NFA
	DFA/NFA/RegEx Equivalence

	Non-Regularity
	Proving Non-Regularity
	Fooling Sets
	Closure Properties

	Context-Free Languages
	Pushdown Automata
	Algorithms
	Divide and Conquer
	Dynamic Programming

	Graphs
	Intro
	Directed Graphs
	Shortest Path Algorithms
	Graph DP

	Reductions
	Complexity

	Decidability

