
ECE408: Parallel Programming
Pradyun Narkadamilli

Contents
1 Lecture 1 1

2 Lecture 2 1
2.1 Case Study: Vector Addition 3

3 Lecture 3 3

4 Lecture 4 4

5 Lecture 5 5

6 Lecture 6 5

7 Lecture 7 6

8 Lecture 8 7

9 Lecture 9 7

10 Lecture 10 7

11 Lecture 11 9

12 Lecture 12 9

13 Guest Lecture: Nsight Profiling 10

14 Lecture 14 12

15 Lecture 15 13

16 Lecture 16 14

1

17 Lecture 17 15

18 Lecture 18 16

19 Lecture 19 17

20 Lecture 20 19

21 Lecture 21 20

22 Large-Scale Inference/Training 22

23 Lecture 22 23

1 Lecture 1
• Dennard Scaling - total power is constant for same chip area as tran-

sistors get smaller

– No longer holds true, requires better computer architecture for
performance improvements

– Combatted via multi-core processors, vector engines, latency/throughput
oriented heterogenous architecutres, 3D packaging

• If CPU is latency-oriented, then GPU is throughput-oriented

– GPU has small caches, moderate clock, simple control (no BP,
no forwarding), efficient ALUs (heavily pipelined)

– Requires of thousands of threads for the throughput benefit to
outweigh latency hit

– The GK110 GPU had 2880 CUDA cores on a 28nm process, vs.
10th gen intel CPU w/ 10 cores on 14 nm

• Ideally, use CPU for sequential/control logic, then GPU for paralleliz-
able bits

• We want to make scalable, portable, maintainable code and algorithms

2 Lecture 2
• We consider a thread the basic unit of computing (refers to the com-

bination of a program, PC, context [memory, regs, etc.])

2

– Can be considered a single execution context

• While some-threaded applications can afford inter-thread communica-
tion, in many-threaded context we want very little inter-thread comms
required

• CUDA - is essentially an integrated host+device C program

– Serial/parallel-ish parts run on CPU, highly parallel run on the
device SPMD kernel C code

– SPMD → Single Program Multiple Data
– Executed on device as a grid (array) of threads - all threads in

grid run the same kernel code, but by using thread idx we can
vary behaviors

• CUDA kernel grid is a 3D array of thread blocks. Each block is a 3D
array of threads (6D structure overall)

– On SPMDmodel, we get each thread to execute the same program
on different data

• Some handy dandy execution variables

– gridDim and blockDim give us relevant dimensions - consistent
per grid and block

– Each block is assigned a unique blockIdx, and each thread is
given a unique threadIdx

– All vars have x, y, z members

• Intra-block communication done via shared memory, atomic opera-
tions, and barrier synchronization

– Inter-block threads cannot cooperate

• CUDA functions can be declared with one of three descriptors

– __device__ <ret_type> FuncName() - executed on device, only
called from device

– __global__ <ret_type> FuncName() - executed on device, only
called from host
∗ This is how we define a kernel function

– __host__ <ret_type> FuncName() - executed on host, only called
from host

3

2.1 Case Study: Vector Addition
• We need to migrate data to the GPU

– Malloc memory on GPU, memcpy host’s vectors to GPU vectors

• Kernel will operate per-idx of array (each thread handles an IDX)

• Memcpy output on device back into host

• Free device memory and unused host memory

3 Lecture 3
• Thread blocks have no fixed order - they are scheduled in some arbi-

trary order

• Threads assigned to streaming multiprocessors at a block-level

– Up to 32 blocks per SM (on the Maxwell architecture)
– Maxwell can also handle 2048 threads per SM

• Threads are run concurrently, and the SM will manage/schedule exe-
cution while maintaining thread/block ids

• Blocks are executed as 32-thread warps - these are the fundamental
scheduling units of an SM

– Warps are not exposed to the CUDA programming model, but
are an implementation decision of the GPU

– Warps are divided based on thread index ranges (0-31, 32-63,
etc.)

• An SM will implement zero-overhead warp scheduling

– A warp is eligible for execution if its operands are all ready
– Eligible warps are selected via a prioty-based scheduling algo-

rithm
– All threads in a warp execute the same instruction when selected

• Different threads within a warp have the potential to diverge at branches

– This is the big performance concern w.r.t control flow

4

– GPUs use predicated execution - each thread will compute taken/not
taken for each path, then the valid permutations of these paths
are executed serially by the GPU

– The resulting behavior is that all threads will execute all valid
control paths for the warp, even it does not apply to that specific
thread

• Performance can be improved by making branch granularity a multiple
of warp size rather than granularly heterogenous branching behavior

• Keep in mind that SMs have limitations on both block count and
thread count - pick block size/thread count accordingly to fully utilize
SMs

4 Lecture 4
• Von Neumann Model - Instructions store in memory, decoded, then

executed. CPU separates into memory, processing unit, control unit,
and I/O

– ”Fetch, Decode, Execute, Memory” instruction processing
– Operation, Data Transfer, and Control Flow instructions

• CUDA has some different memories

– Per-thread registers
– Per-block shared memory (~5 cycles) - declared as __device__

__shared__ variable
– Per-grid global memory (~500 cycles) - declared as __device__

variable
– Per-grid read-only constant memory (~5 cycles w/ caching) - de-

clared as __device__ __constant__ variable

• Tiling - we separate the output into a bunch of ”tiles” (sub-matrices
of matrix product, for example) and assign each block to produce a
different tile

– When tiling, inefficient or excessive global memory accesses can
significantly reduce computational throughput due to memory
latencies

5

5 Lecture 5
• A naive implementation of matrix multiplication (tiling the output) is

inefficient, due to bottlenecks on the global memory

– Each thread requires a full row and column spanning the entire
matrix, and it’s all done from the original arrays!

– Induces inefficient global memory accesses

• By tiling the input data instead, we can take advantage of locality and
use shared memory on a per-block level

– We can read tiles into shared memory using multiple threads to
get better memory-level parallelism

• We can tile inputs and use partial products of matrix multiplication
for better performance

– Requires synchronization with barriers to do accumulation cor-
rectly

• Barrier Synchronization - threads stop at barrier until all threads cov-
ered by this barrier (e.g all threads in this block) are complete

• Tiling input via shraed memory changes bottleneck from memory to
computational

6 Lecture 6
• RAM : Random Access Memory - we assume write/read time is iden-

tical

• DRAM : Dynamic RAM stores bits on capacitors, has discharge prob-
lems

– Charge/discharge bitline to read/write, connection done via ac-
cess transistors and a SEL line

– Sense amps used to amplify minor peturbations in bitline voltage
on read

– Most large memories use DRAM
– Assume that a single SEL line connects to ~1000 bitlines

6

– These bit lines are muxed between via ~12 bits going into a mux

• DRAM is unclocked, but its interfaces must be clocked

– Core speed is significantly slower than interface speed
– DRAM will come out in bursts, usually bursted between different

columsn on the same row
– Can read between multiple banks in parallel to improve burst

timing even more (less dead time)

• By default, when doing a matmul of A×B, only the DRAM accesses
of B will be coalesced

– We can use shared memory to better coalesce the memory ac-
cesses for both matrices

7 Lecture 7
• Convolution: f [x] ∗ g[x] =

∑
f [k]g[x− k]

– In this class, we assume centered filters usually
– Odd-width filters are preferred for symmetry

• When convolving a mask with an input, the mask is a good candidate
for constant memory

• CUDA Memories

– Registers take ~1 cycle (per-thread storage)
– R/W into shared memory is ~5 cycles (per-block storage)
– R/W into global memory (per-grid storage)
– R/W into constant memory is ~5 cycles w/ the cache hierarchy

(per-grid storage)

• Shared memory is similar to L1 cache w.r.t timing

– More predictable copy and eviction, since manually managed

• Special constant cache in GPU for constant data, will not be modified
during kernel execution

– Can have higher throughput than L1 cache

7

8 Lecture 8
• Generating an output block will require more inputs than output cells

(halo cells) - 3 strategies for thread allocation

– Strat 1: Block covers output tile, some threads also load halos
into shared mem
∗ Global memory accesses are coalesced, no computational branch
divergence

∗ Branch divergence incurred at tile-loading step, and some
extra shared mem needed

– Strat 2: Block covers input tile, some threads disabled during
computation
∗ Best performance overall, but wasted throughput because
halo threads disabled at computation

∗ Avoids narrow global accesses (only accessing small halo re-
gions)

– Strat 3: Block covers output tile, during execution halo cells are
pulled from global memory
∗ Branch divergence during computation and small halos won’t

fill memory bust
∗ Better shared memory utilization, at the cost of throughput
on rearely-used values

9 Lecture 9
• Stencil Algorithms: class of data processing algorithms that update an

array based on some fixed pattern

• Tiling benefit can be calculated by looking at total accesses over shared
memory elements

10 Lecture 10
• Machine learning is a good tool to automate tasks that are difficult to

formalize, but easy to perform

– Recognizing speech, facial detection,etc.

8

• Easily describable tasks that are hard to perform may be better done
as an algorithm, however some subcomponents may benefit from ML

– Data representation can have a big impact on how easily identi-
fiiable features are

• Machine Learning: ability to acquire knowledge or intuition by per-
forming pattern analysis on data

• Deep Learning: Representations can be expressed in terms of other
representations

– by layering these conversions and creating a ”conceptual hierar-
chy” so to speak, the machine can create more complex feature
mappings

• A linear classifier will take a single vector, multiply it into a weight
vector, and produce a scalar

– A fully-connected layer can produce a vector output rather than
a simple scalar

• A multilayer classifier can sequence an input layer, multiple fully-
connected hidden layers, then pass into an output layer to produce
vector outputs

– The output layer can be put through an argmax or some other
manipulation to produce the final output

– Ex: each index is a proability of what digit the input is, and then
the output is the highest probability

• Inference is done via forward-propagation through the layers

– To train, we need to backpropagate through the layers
– On training data we can compute an error E then adjust the

weights proportional to that E

• Layers will sometimes include an activation function to ”reposition”
the output

– Sigmoid, Sgn, ReLU, etc.
– Smoother activation functions make it easier to backpropagate,

since the derivative is better defined
– Softmax function is used to ”normalize” a vector into a probabil-

ity distribution

9

11 Lecture 11
• Weights can be calculated via stochastic gradient descent

– Do forward inference, then use the proabilities of each pre-argmax
output and the intended label T to calculate error

– Backpropagate the derivative of said error E to dinf derivative of
each network parameter

– Peturb the network parameters in the opposite direction to the
derivative to reduce error

– Rinse and repeat this process - though doing this too much can
cause overfit

• An epoch in training refers to a single pass through the full training
set

• For a large image, fully-connected layer for an MLP will be huge, and
hidden layers make the computation infeasible

– Filters are better suited for feature detection in image processing
applications

– A neural network can have convolutional layers in addition to its
fully-connected layers - these are CNNs

12 Lecture 12
• Convolution layers have A input features, B convolution kernels, and

a total of A×B outputs

– Each input feature can be multi-channel, with a different kernel
being used for each channel (but aggregatng into the same final
output)

• Subsampling layer used to make representation invariant to transfor-
mations like scaling or translation

– Examples include max, average, L2 norm, etc.

• Trivial parallelization of 2D convolution layer can be done as follows:

– Grid dimensions parallelize batch, feature, and 2D tile (linearized
via row-major order)

10

– Each index in each tile computes a different pixel for a specific
feature of a specific batch

– Potential for shared memory usage, but need to analyze the reuse
patterns

• Subsampling by Scale N: averages an NxN block then calculates the
sigmoid on that value

– Same higher order output dimensions as conv ouptut, but smaller
H/W per feature

– Can be merged into the convolution layer to save bandwidth

• Convolutions can be converted to matmuls by unrolling the filters and
input features

– Outputs directly correspond to a pixel in the output feature

• Transformer Language Models add self-attention layers to the expected
feed-forward layers

– Usually a tokenized version of input text fed into transformer-
based LLM, which then spits out tokenized output that needs to
be converted to text

13 Guest Lecture: Nsight Profiling
• Want to be able to understand CUDA tools to unpack and understand

GPU performance

– Specifically GPU utilization

• Nsight Compute used for kernel-level profiling

– Mostly GPU execution speed

• Nsight Systems used to profile at system-level

– System dispatch speed (sending work to GPU)
– System-GPU parallelism
– System-GPU data transfer speed
– How much time CPU takes to control GPU
– CPU/GPU asynchronicity

11

• Profiling data is recorded on Delta server, then we analyze it locally

• Host code requires specific includes and linker arguments to be profiled
well

– Make sure kernel is memory-safe before profiling, since it can
cause new errors
∗ cuda-memcheck

– Normally, system may not always catch memory failures, among
other types of silent errors

• Remove debug flags when profiling - these kinds of flags can induce
runtime slowdowns and prevent optimizations

– Add line number annotations so that profiler can map from com-
piled code to codebase locations

• Profiling good to figure out behavior and tendencies of program, but
should not be considered a benchmark

– Benchmarks require optimal compile parrameters, and profiling
can impede kernel performance to collect data

• Stream refers to queue of sequential CUDA events

– Program can use multiple CUDA streams
– Operations are overlapped using different streams

• Events record the state of a CUDA stream

• For Nsight Compute, data is collected via a CLI on the target platform,
then analyzed with GUI on client

– Main thing to know about on the GUI side is SOL or speed of
light

– SOL shows the utilization% compared to the theoretical maxi-
mum

– GUI can also show scheduler statistics, like warp stalling, how
many warps were issued/given to SM, etc.

– Warp state statistics avilable, like how many cycles it takes for
instructions to evaluate, and what the inter-instruction latency
is

12

• Nsight Systems used to analyze system-GPU interactions and perfor-
mance

– Similar CLI/GUI flow
– Many of our labs can be decomposed into CPU-to-GPU transfer,

GPU execution time, then GPU-to-CPU transfer time
– We could parallelize the memory transfer and kernel execution

for performance improvements

14 Lecture 14
• Scan: given an array, calculate the sum of an operand and all the

elements that came before it

• Various scan algorithms exist

– Naive: Each thread calculates an element in the scan array

• Reduction Trees: Also called Kogge-Stone or a Kogge-Stone Tree

– Calculate each output element as a reduction of all previous ele-
ments, share some reduction partial sums

– Iterate from a stride of 1 to N
2 . For each stride amount, set

a[k] = a[k] + a[k - stride], updating the top (N − stride)
elements on each iteration

– Runtime is O(log(n)), but total add ops is O(n log(n)) - much
less efficient than naive sequential’s O(n)

– Typically used on a per-block basis
– Blocksize is generally matched to shared array size

kogge_stone:
shared = in

for (int i=0; i<logstrides; i++){
if (elem >= stride)

temp = shared[i] + shared[i - stride];
__syncthreads();
if (elem >= stride)

shared[i] = temp;
__syncthreads();

13

}

out = shared

Can double buffer the shared array used in koggestone to remove a sync-
threads without a race condition. Output/input roles swap per iteration.

15 Lecture 15
• Balanced trees can help improve work efficiency - e.g a Brent-Kung

Parallel Scan

• Brent-Kung Scan: Consists of a Scan step and a Post-Scan step

– Generally done with the the blocksize as half of the block’s data
size

– Scan step is an adder tree, constructing the highest order sum
with the tree
∗ Update intermediate elements as you go, of course. Can use
double buffer here for better performance

– Post-Scan step is to update all the lower order, elements after the
initial scan
∗ Iterate over strides again - the highest order element of each
stride segment is used to element the element ahead of it by
stride/2.

∗ Ex: Suppose you have a scan of size 8. Final reduction stride
was 4. You take element 3, add its value to element 5. Keep
going until the stride segment size of 2.

∗ Effectively the same as the reduction tree, but the tree is
shifted to the right by (stride-1) - one node removed per
level

• Brent-Kung algorithm will perform a total of O(2 log(n)) iterations as
opposed to Kogge Stone’s O(log(n)). However, it does it on a smaller
blocksize for the same amount of data, so warps*iterations is identical
for a fixed length array.

– Kogge-Stone is more popular in GPUs due to the lower iteration
count

14

• Scan generally has to be done in ”segments” - you take scan of segments
of the array

– Take highest order element of each scanned subarray, store it into
an aux array, then perform a scan on that

– Used the first N − 1 scanned elements of this aux array to incre-
ment elements of the last N − 1 subarrays

– This incrementation strategy will produce a final array that is
fully scanned

• Exclusive scan will take sum of prefix elements, with the last element
of the array not being the total sum anymore

– More useful in some applications, like finding starting memeory
addresses

– An efficient exclusive scan is identical to an inclusive scan algo-
rith, you just shift the loaded shared array to the right by one
element, with the gap in position 0 filled with a zero

– Inclusive scan can be derived from exclusive by adding first ele-
ment to every element in array

– Inverse for deriving inclusive from exclusive

16 Lecture 16
• In highly parallel programs, writes to shared memory w/o synchro-

nization can cause read invalidation

– Data that was read out of an address may be changed by the time
you overwrite it

– Need to use synchronization, critical sections, or atomics to avoid
this artifact

• Atomicity does not constrain relative order, cannot be used to enforce
a global memory access ordering

• Many ISAs have atomic instructions (ex: RISC-V CSR modifica-
tion/read instructions)

– Test and set, compare+swap/exchange, swap/xchange, fetch and
add

15

• Threads are queued when making accesses to a memory location atom-
ically - atomics performed serially

• Histogramming: Perform frequency analysis on a large data set to
extract features/patterns

– Map each element to a bin, increment that
– Easy enough for sequential code, hard to parallelize because of

race conditions
– Long DRAM delays mean that it is bottlenecking to use atomics

directly on global mem for every op
– Better to perform intrablock atomic instructions into shared mem-

ory, then coalesce data with other blocks into global memory via
more atomic increments

• General Histogramming Algorithm

– Make a shared coyp of the intended histogram
– Iterate block over the input segment, while using a coalescable

access pattern
– Use atomic operations on shared memory copy to construct a

block-level histo
– Use atomicadds onto a global output bector to construct global

histo

• General principle above called privatization

17 Lecture 17
• Sparse Matrix matmul is very irregular, has low input data reuse, and

compiler transformations are not super helpful

• Want to somehow improve the regularity of the sparse matrix structure
and improve layout for DRAM bursts

• Many possible sparse matrix representations, each with their own ben-
efits and drawbacks

– Compressed Sparse Row: Nonzero elements of each row are seri-
alized into a data array

16

∗ Second corresponding array, denotes column index for each
element

∗ Keep an array w/ one element per row (and an extra sen-
tinel), denotes the index in data array where that row starts

∗ A simple kernel could assign one thread per row, use row
pointer to pull out iteration bounds on data array

∗ Lots of control divergence, since iteration bounds can vary
per element, and therefore per thread

∗ Adjacent elements in data array are not adjacent rows, so
bad memory coalescing in kernel

– ELL Format: take CSR, pad all rows in data array to the same
length, then transpose the data/column arrays
∗ Move forward by num_rows as you move across the row in
data array (it is now column major)

∗ ELL does not ignore rows with all zeroes - that gets padded
too. Duplicate column indices indicate invalid elements

– COO Format: Each element in data is given a column index and
row index (2 aux arrays)
∗ Allows for element reordering
∗ Easy to make a sequential kernel for this, but COO will usu-
ally end up requiring atomic operations

– Hybrid Format: Encode the first N nonzero elements in each row
with ELL (pad rows with less than N)
∗ Any ”outliers” (elements above the first N nonzeroes, where
N is typical to most rows) are encoded in COO

∗ COO elements are used to peturb the initial array computd
from the ELL elements

∗ Hybrid format helps reduce space overhead induced by ELL
padding, while retaining benefits of ELL

• Note: for a matrix w/ column or row pointer array, the last element
will be the total number of elements in data array

18 Lecture 18
• With traditional CSR, adjacent elements can have wildly different

nonzero elements

17

– With ELL, padding can waste space or cause unecessary iteration
counts on smaller rows

• Can sort CSR rows by number of nonzeros to form a Jagged Diagonal
Sparse matrix (JDS)

– CSR is sorted, meaning data array is no longer ordered by row
– In addition to row_ptr array, keep a second array like row_perm

which tells you which row each range in row_ptr corresponds to
– Can use algorithm very similar to typical CSR, but now adjacent

threads have more similar iteration counts
– Less likely to have control divergence, even though we basically

just use the CSR algo
– Can do the transpose JDS data array to improve memory coa-

lescing
– After transposition, typicall col_ptr array is used instead of

row_ptr - helps easily determine which threads should be ”on”
for each iteration

19 Lecture 19
• Performance bottleneck will probably end up being bandwidth be-

tween key components

• Important to understand how old computer architectures looked

– North bridge connected to CPU, connects it to high speed devices
(AGP bus, South bridge, RAM)

– South bridge connected to slower devices and I/O, i.e SATA/ATA
devices and PCI buses, acts as a concentrator

– NVIDIA GPUs used to be connected over the AGP bus, 2GB/s

• PCI bus originally was a shared bus on the south bridge, shared bus
with arbitration

– PCI’s device registers were mapped into the memory map for the
CPU, addresses assigned at bootup

• PCIe (PCI express) is instead a switched point-to-point connection
direct from the CPU

18

– CPU connects to a central switch, which has a link to each device
– Effectively acts as a network switch, packet switching applies

here, with packet priorities for QoS

• PCIe links can have a different number of lanes

– A PCIe gen 3 link consists of 1 or more lanes - each lane is 1 bit,
and has 4 wires

– Each lane has 2 inbound and 2 outbound wires. Differential sig-
nalling used for each bit, and inbound/outbound can be simulta-
neous

– Each lane transmits data as a rate of 1GB/s on its own
– The link width is varying at the switch itself, since the PCIe

switch has a singular connection to the CPU
– Bytes are encoded w/ 128b/130b encoding, which has an equal

number of 1/0s
– 128/130 encoding maintains DC balance while having sufficient

state transition for clock recovery
∗ Each 128 bit combination is mapped into a 130 bit sequence
∗ Only 1.5% overhead instead of 8/10!
∗ Runs of 1s are vanishingly small, mostly long runs of 0s
∗ One shift guaranteed every 66 bits

• Recently PCIe has been used as the interconnect ”backbone” in PC -
Northbridge/Southbridge are PCIe switches

– May need a PCIe-to-PCI bridge to support older PCI devices.
PCIe controllers are integrated on-chip with the CPU itself

• PCIe data transfer is done via DMA controller, dumps data directly
into the DRAM

– Requires pinned memory, so that PCIe/CPU can reliably use the
same region for communication

– If not pinned, DMA’s physical memory region can be ”paged out”
and assigned to a different virtual page during transaction

– cudaHostAlloc will allocate pinned memory, prevents being paged
out, free it with cudaFreeHost

19

– cudaMemcpy will only work with pinned memory, so copying into
a malloc region is actually two transactions
∗ Copy to pinned region
∗ Copy from pinned region to actual malloc’d region

– If using hostAlloc to get pinned memroy, cudaMemcpy will be 2x
faster

– Overallocation of pinned memory is bad - CPU rotates out virtual
memory to ensure large virtual address space can be mapped onto
smaller PADDR space, don’t want to fuck this up

– NVLink is a Multi-GPU and GPU-CPU interconnect - connects
GPUs between multiple systems together in a mesh topology of
some sort
∗ EX: Connecting 8 GPUs together in a hybrid cube mesh
∗ GPU-GPU transfers over NVLink are 160GB/s bidirection-

ally, ~5x faster than over PCIe
∗ Some CPUs, like IBM’s Power9, can use NVLink to con-
nect to the GPU itself. This makes GPU-CPU connection
~150GB/s

∗ Based on diagram, Delta exclusively uses PCIe gen 4 to con-
nect GPUs together?

20 Lecture 20
• Most CUDA devices allow interleaving Device-Host data transfer with

GPU kernel execution

– Overlap transfer and compute of adjacent segments
– PCIe is bidirectional, output transfers can be overlapped with

computation and input transfers as well

• CUDA abstracts this interleaving as ”streams” - queue of kernel/cudaMemcpy
operations

– Different streams can be executed in parallel - take advantage of
this to absolve yourself of serial dependencies

– Host thread enqueues operations, driver will dequeue them - one
queue per stream

20

• Stream operations are enqueued via asynchronous functions, e.g non-
blocking functoin calls

– Kernel can take an additional launch parameter determining which
stream it links its execution to

• Keep in mind that there is a single copy engine and kernel engine -
they get shared by all streams

– AFAIK age-ordering is the arbiter strategy between multiple con-
flicting streams, so want to make sure Async calls are made in
intended order to maximize parallelism

– Fermi architecture and earlier used to serialize multiple stream
queues into a single operational queue - bad for inter-stream par-
allelism, leads to Head-of-Line blocking

• Task runtimes are affine functions, so moderate segment/stream block-
size is required to make it yield performance benefits

– Best ”moderate” size can vary from system to system - profile to
figure it out!

21 Lecture 21
• CUDA is just one model for parallel computation

– Many other models for compute accleration and parallelism
– Ex: OpenCL, ROCm, etc.

• General set of traits for any acceleration API

– Hardware: Some hierarchy of lightweight cores, local (scratch-
pad) memories, no HW coherence for SPEED, some slower global
atomics, and a threading model

– Software: Kernel-based acceleration, device/host memory sepa-
ration, software-managed memory, Grid/Block/Thread

• OpenCL: generic framework for CPUs, GPUs, DSP cores, FPGAs, etc.

– Models system as a host/context separation - context is the ”hard-
ware”, with work-groups instead of SMs/Blocks

21

– Work-groups have local memory, and work-items have private
memory (registers, I think)

• Some frameworks, like OpenACC, use pragmas on top of typical C++
code instead of defining language extensions

– Allows for a ”single version of code” for both sequential and par-
allelized version

– OpenACC can infer the parallelism constructs, and pragmas can
be ignored by other compilers

– Nice idealism, but code may not work if pragmas are ignored and
sequentially compiled

– Strong dependence on compiler may not be ideal - parallelism is
less user-specified and more compiler-inferred

• OpenACC models device with execution units, each executing a set of
threads concurrently

– No user-specified cross-thread synchronizatoin

• OpenACC has a ”gang” consisting of many ”works”, which execute
many vector operations in parallel

– Like block vs. thread basiclaly, and set of gangs is the grid

• Pragmas tell the compiler about data movement, available parallelism,
and what to treat as a parallel region

– copyin and copyout denote how to send data on and off the
device

• Parallel region/construct is executed on accelerator, number of gangs/works
can be specified (grid/block size)

– Can specify how to stripe work across gangs, or gangs will just
execute same work on each one

• MPI Model: Many ”nodes” with distributed processes

– Each process computes partial output, and different processes
communicate via message-passing

– Saome global synchronization constructions, but data communi-
cation is all message-passing

22

22 Large-Scale Inference/Training
• Power is the main limiter for AI training - need to improve power

generation, delivery, and efficiency

– Bottleneck will arise by 2030

• Batch size of training determined by memory bandwidth and desired
backward pass frequency

– Can do it faster by separating data into multiple batches (mini-
batching), evaluate those parallely on many GPUs to aggregate
gradient and figure out an update

• Data parallelism is done via a parameter server

• Parameter Server: Many GPUs can infer model in parallel, send deltas
to a parameter server, which propagates changes to all GPU before
next per-GPU batch

– Centralized server means that all workers communicate with it,
bandwidth/connection constraints limit scaling

• Can perform AllReduce, so element-wise reduction across multiple
GPUs to generate a more consistent output, require fewer GPUs con-
tacting parameter server

• Our mini-batch parallelism relies on having each GPU have a different
copy of the model - bottlenecked by GPU memory capacity, so you
can’t have larger models

• This led to model parallelism, so model is split between multiple GPUs
by either assigning layers to each GPU or splitting a single layer’s
operation into multiple GPUs

• Tensor Model Parallelism

– partitioned Tensor Model Parallelism separates the output into
multiple GPUs (quadrants of matrix generated by different GPUs)

– reduction Tensor Model Parallelism computes partial sums for
the output on each GPU, then performs a sum reduction across
the partial outputs (partition inputs)

• We also have pipeline parallelism

23

– Split the sequential layers into multiple GPUs (pipeline the GPUs
in sequence!)

– Can run into GPU utilization issues, due to bubbling as the model
propagates through, but can allow for larger models

– Can separate minibatch into microbatch to reduce bubbling (less
dead time) - different layers/GPUs will have parallelism while
processing different microbatches

– There will be a bubble between the forward pass and backward
pass, and then a flush to kick off a new forward pass

• Modern implementations will combine pipeline parallelism, data par-
allelism, and tensor model parallelism

– Data parallelism for large batch, Tensor Model Parallelism to run
larger models, and Pipeline Model Parallelism to support deeper
models

– All this parallelism requires strong communication networks in
between the GPUs

• Computer/Power Density is constrained by copper and cooling, getting
better due to liquid pooling

• Parallelism of LLMs is very similar for inference and training - perfor-
mance optimizations are a bit different

– KV caching - memoizes prior computation state, since as you
grow the context you can reuse some of the computations by
caching the KV product

– Attention is getting appended to the KV state, so you can cache
that, so you only really generate the APPENDATIONS as you
go forwards

• Reducing floating point precision can improve power-to-performance
ratio, and some algorithms can reduce energy consumption at all

23 Lecture 22
Intel has AMX that is very similar to NVIDIA’s tensor cores, but it’s used
in CPU code (SIMD engine). Google TPU is also effectively a very complex
matmul accelerator.

24

	Lecture 1
	Lecture 2
	Case Study: Vector Addition

	Lecture 3
	Lecture 4
	Lecture 5
	Lecture 6
	Lecture 7
	Lecture 8
	Lecture 9
	Lecture 10
	Lecture 11
	Lecture 12
	Guest Lecture: Nsight Profiling
	Lecture 14
	Lecture 15
	Lecture 16
	Lecture 17
	Lecture 18
	Lecture 19
	Lecture 20
	Lecture 21
	Large-Scale Inference/Training
	Lecture 22

