
ECE428: Distributed Systems
An Exercise in Complicated Rust Code

Pradyun Narkadamilli

Contents
1 System Model 2

1.1 Communication . 2
1.2 Modeling Synchronicity . 2
1.3 Component Failures . 3

1.3.1 Fancy Heartbeating . 4

2 Time 4

3 Consensus 6
3.1 Paxos . 7
3.2 Raft . 8
3.3 Blockchain . 9

4 Timestamps and Ordering 9

5 State and Snapshotting 11

6 Multicast 12

7 Mutual Exclusion 14

8 Leader Election 16

9 Transactions and Concurrency 16
9.1 Locking for Isolation . 17
9.2 Opimistic Concurrency Control . 17
9.3 Distributed Transactions . 18

10 Key-Value Stores 20
10.1 Distributed Hash Tables (DHT) . 20
10.2 Cloud KV Stores . 22

10.2.1 Map/Reduce . 22
10.2.2 Job Scheduling . 22
10.2.3 Large-Scale Implementation . 23

1

1 System Model
• How do you define a distributed system?

– Broadly: Independent components or elements connected by a network, which commu-
nicate by passing messages across said network

– These components usually have a common goal, and achieve this while appearing as a
coherent system

∗ Ex: Many servers appearing as unified Google Drive service

• Algorithms must be formulated differently when dealing with distributed systems

– Typical algorithms are formulated sequentially, they need to be striped across different
systems, where steps may occur concurrently between different systemes

– Full sequencing of an algorithm even after being striped renders the ”distributed” nature
of the algorithm completely irrelevant - you might as well kill yourself

• There are three main ”aspects” when designing a distributed system

– Processes communicate with each other to coordinate, and the time to do so may not
be fixed

– Different process may not be synchronized (different clocks)
– Failure may happen in a process or on a communication channel

1.1 Communication
• Processes communicate via network sockets, even if on the same host

• Consider the model of a communication channel - what properties to consider?

– Latency is the delay it takes for the message to go across the channel
∗ Any queueing delays over the network are considered in latency

– Bandwidth is the total amount of information that can be sent per unit time
∗ Sometimes called channel bandwidth, for obvious reasons

• Total time to send data is a composite of bandwidth and latency

– Approximation: T = size
B + L

1.2 Modeling Synchronicity
• Different computers will have different internal clocks, so they may have different frequencies

and phase

• Two big models for a distributed system

– Synchronous Systems
∗ Known upper/lower bounds on time per step of process

2

∗ Bounded message passing delays and clock drift

– Asynchronous Systems
∗ No bounds on any of the 3 factors above
∗ Most real systems fall under this model, but it is possible to construct a synchronous

system

• Time-critical systems (like a supercomputer) can be made to be synchronous, but it’s expen-
sive

1.3 Component Failures
• Omission: Process/channel fails to perform an action that was expected

– Crashed process, runtime errors, etc. etc.

• Arbitrary Failures: Any type of error, best summarized as ”something breaking” or ”buggy
code”

• Timing Failures: Timing guarantees are not met in a synchronous system

• Something to consider is how to orchestrate failure detection

– Two rudimentary options to check if remote is alive:
1. Periodically ”ping” system, check for an ack

∗ A ping timeout can be set to 2× (max network delay) in a synchronous system
∗ Asynchronous timeouts may need to be dynamic or obscenely high

· Can be set experimentally by measuring the max RTT at runtime, and waiting
for some multiple of it

2. Design the remote to periodically send a ”heartbeat”
∗ Synchronous timeout is max net delay minus min net delay
∗ Asynchronous timeout is some factor of observed delay

• Any failure detection mechanism must guarantee two properties to be correct

– Completeness means that every failed process is detected eventually
– Accuracy means that there are no false positives
– Both check-alive methods above are considered correct in a synchronous system

∗ In an asynchronous system, timeouts can potentially be aggresive, violating accuracy

• It is impossible to achieve both completeness and accuracy in an asynchronous system

• Worst-case failure detection times

– Ping-Ack: T +∆1 −∆ (∆ is time taken for last ping from p to reach q)
– Heartbeat: T +∆2 +∆ (∆ is time taken for last heartbeat from q to reach p)
– Note that Ping-Ack requires two messages per detection, heartbeat has one

3

• Two Generals Problem

– Both are thinking when to attack - they both want to attack at the same time
– Messages must be passed to coordinate attack time, can potentially be dropped
– Both sides should continually send messages until the other side confirms a receipt
– Receipt will terminate the ingress message stream

∗ There is a shitfuck case where the ack gets killed and all ingress messages get
dropped, so there is a false assumption of the receiver of communication success

∗ We ignore the shitfuck case, this might be okay in practice

1.3.1 Fancy Heartbeating

• Want to extend our idea of heartbeating to a system with many machines

• Centralized Heartbeating: All heartbeats sent to a single source, but failure rate is high if the
central server fails

• Ring Heartbeating: All heartbeats are sent to the next server in a ring.

– Single machine failure is fine (next machine times out) but if multiple machines fail then
you won’t know how many

– Additional overhead for when you need to repair the ring

• All-to-All Heartbeats: Everyone keeps track of all other machines. Perfect state capture, but
lots of bandwidth

2 Time
• Clocks are useful (not signals, like literal system clocks)

– Can check how long it took for a request to go somewhere
– Timestamps can be used to order events
– Can timestamp actions as well for logging purposes

• In a distributed systems, the clocks (wall clocks) need to be synchronized for accurate times-
tamping

– Different computers will have a clock skew, relative difference
– There will also be a drift rate, which is rate at which a clock skews from a perfect

reference

• In synchronous systems, drift rate is bounded, but skew is technically unbounded

• Two big types of clocks

– Quartz crystal clocks, which drift ≈ 10−6 s
s

∗ Skew is ≈ 30 minutes after 60 years

4

– Atomic clocks have a drift rate of ≈ 10−13 s
s

∗ Skew is about 0.18 ms after 60 years, used for standardized clocks (U.S naval obser-
vatory)

• Clocks can be synchronizes either internally or externally

– External synchronization is done with an authoritative clock for accurate timestamps,
skew bounded to D

– Internal synchronization is done within a system for relatively matched timestamps
– External synchronization imputes internal synchronization if done completely, with a

bound of 2D

• How to estimate propagation delay for synchronization in a synchronous system?

– Client sends packet to other server asking for its current time, packet is received after
some comm delay

– Since comm delay is bounded in a synchronous system, add min+max
2 to packet time

∗ Provably minimizes worst case skew to max−min
2

• Need more complex algorithms for synchronizing two asynchronous systems

• Cristian Algorithm

– When a packet is sent, client will measure the RTT for this packet
– Offset received packet time by RTT

2

• Berkeley Algorithm

– Only works with internal synchronization
– Assume hub-spoke model (single server, many clients)
– Server periodically polls clients to see what their clock time is
– Server uses the Cristian Algorithm to estimate the time per client
– Average local time is used as the new ”reference” time
– Send an offset to all clients of how much they should adjust their clock

∗ Offsets are not invalidated by network delays, but a reference time would be

• Network Time Protocol

– Single primary UTC synchronization clock
– Internet devices are organized in to levels of a tree called ”strata”
– Each strata synchronizes with a server in a higher strata
– Authentication mechanisms are used to ensure security
– Clocks can be synchronized via a server multicasting timestamps on LAN (low accuracy)

or a procedure-call (Cristian algorithm)
– Symmetric mode is used to synchronize the lower-strata servers

5

• NTP Symmetric Mode: A&B exchange messages, record the TX/RX timestamps

– A/B will exchange their local timestamps, and compute their relative offsets

• Asynchronous Synchronization Options (Recap)

– Cristian Algorithm: Client-server synchronization
– Berkeley Algorithm: Internal synchronization between clients
– NTP: Internet-wide hierarchical synchronization

3 Consensus
• Consensus: Each process proposes a value, and all processes must agree on one of these

values

– Some criteria should be used on how to
– You can consider total ordering a form of consensus

• We can formalize this concept into the consensus problem

– You have N processes
– Each process begins an undecided state, proposes a value vi

– At some point the process will set a decision di, and enters a ”decided” state

• Consensus algorithms solve the above problem with a couple of requirements

– Termination: All processes must eventually set the decision
– Agreement: All correct processes should make the same decision
– Integrity: If all correct processes propose the same value, all correct processes should

use that for decision

• Round-Based Algorithms

– Processes are synchronized and operate in ”rounds”
– A ”round” completes in ϵ+ T time

∗ e.g the start/end time of a round in two processes is off by a max of ϵ
– Algorithm runs in f + 1 rounds, where f is the number of node failures
– Communication channels are assumed to be reliable (TCP-esque)
– Every round, multicast the new values you receive between rounds
– When rounds end, you can now use a decision criterion on all the received values

• Consensus cannot be solved in asynchronous sytems - you either violate safety or liveess

– We can create an algorithm that fulfills some of the criterion

6

3.1 Paxos
• Popular algorithm for asynchronous conensus, under relaxed conditions

– May not terminate, but it fulfills safety

• A process will possess some of 3 roles

– Proposers: propose values to Acceptors
– Acceptors: Accept values proposed under some conditions, tell the world

∗ An acceptor can’t just accept everything
∗ Once a value is accepted, any higher ID acceptances need to have same value

– Learners: Learns whichever value the majority accepted
∗ Majority includes crashed processes, which can recover

• Everyone is a learner, but some processes are proposers or acceptors

• The algorithm is dual-phase

– Phase I
∗ Proposer selects a proposal number, and sends a prepare w/ it to at least a majority

of acceptors
∗ After this point, acceptors cannot respond/accept any lower-ID prepare
∗ The prepare will receive an OK response saying it agrees, and if there was a prior

acceptance
– Phase II

∗ Proposers will send an accept request to the acceptors if it receives OK from a
majority of acceptors

∗ If proposer does not get enough OKs, it will wait then re-propose with a higher
proposal number

∗ Response needs to be sent to proposer with OK after accept
– Once a majority is hit with a value in Phase II, it is decided

∗ A decided message is sent to everyone at this point
– Every time an acceptance is made, the acceptor sends the value/proposal to distinguished

learners
∗ The aristocrats will determine if a decision is reached, and inform the other learners
∗ Use multiple aristocrats for better failure handling - if all of them fail, the re-proposal

mechanism fires

• Paxos functions best with a single leader-proposer who is also the distinguished learner

– This can lead to livelock because of failures in leader election, but it’s still ”safe”

7

3.2 Raft
• Practical systems will need to decide on a value ordering for a log

– You could run Paxos multiple times per entry, but this gets fucked in performance and
complexity

• Raft is a consensus algorithm guaranteeing servers execute same commands in the same order

– We keep a consensus module to guarant log replication
– If a majority of servers are online, system will continue to make progress
– Tries to be designed as an understandable system instead of Paxos black-magic

• Raft uses a leader-based algorithm

– Simplifies normal operation and decomposes the problem into clear roles
– Improves efficiency compared to leaderless decentralized algos

• Raft - surprisingly, has a simple checklist of function

1. Elect a leader, and re-elect on crashes
2. Neutralize the old leaders
3. Log Replication
4. Guarant post-election safety and consistency

• Raft communicates with RPCs - remote procedure calls

– A server can call a function/procedure on a different process

• Raft Leader Elections

– A server is always a leader, a follower, or a candidate
∗ Leader handles all client interaction and log replication - 1 at a time
∗ Follower is passive, will respond to incoming requests
∗ Candidates are used to elect new leaders

– Time is divded into ”terms” - each has an ”election” followed by normal operation
∗ If there is a split vote, then the term has no leader, and normal operation isn’t hit

– Servers all start up as followers - they must receive heartbeats from a leader to remain
so

∗ If there is an election timeout without a heartbeat, then election starts
∗ Follower promotes to a candidate then starts the election

– Raft election terminates when a server receives a vote from server majority or if leader
hits them with the ”shut the fuck up”

∗ If election times out without a victor, term is incremented and a new election begins
– Elections must be safe (only one winner) and live (someone eventually wins)

8

∗ We can guarant the former but not the latter

• Raft Leader Neutering

– Terms are used to detect stale leaders/candidates - RPCs must be tagged with sender’s
term

– If the sender term is older than receiver, the RPC is rejected, and the sender reverts to
a follower

– If the receiver term is older, then it reverts to a follower then processes the RPC
– This way if a stale leader tries to do anything, it’s either neutered or slapped into reality

3.3 Blockchain
• Good example of distributed consensus

– Bitcoin is still a currency - all transactions need an agreed order, and can’t be double-
done

• Transactions are grouped into a ”block”

– Block is added to a chain by the block leader
– Every node picks a random number, winner is the one whose hash is less than a threshold
– Hash of previous log/messages used as a seed for the proof of work hash

• Solutions on the blockchain should be quickly verified but not quickly found

• To avoid ”tie” coditions, nodes will always work on the longest chain that they receive

– A transaction is ”committed” when 6 more are linked afterwards (for Bitcoin)
– The longest chain represents ”majority” usually, since the most proof of work was put

into it

• Doing the proof of work of bitcoin is incentivized via a mining reward - this is why crypto-
mining was so popular.

– T is adjusted every now and then so that one block is added every 10 minutes
– Small T will slow transactions, big T will waste lots of effort during chain splits

4 Timestamps and Ordering
• Synchronized clocks are useful because we can determine some global event ordering

– Good for debug, reconciling updates/recency, and generating recovery timestamps of
some sort

• Consider some system with n processes

– Each process has its own state

9

– State changes on rx/tx a message or some computation

• Events between processes need to be ordered

– Ex: Happened-Before Relationship (HB) is denoted a → b for a before b
– HB is a transitive relation, and supports the notion of ”perspective”

∗ a →k b means that this ordering is from the perspective of process k

∗ Perceived ordering can set constraints on the larger global ordering

• Lamport’s Logical Clock

– Each process keeps a local clock Li, initialized to 0
– Clock incremented before timestamping an event
– Clock is sent with a message - on RX message, max of local and RX clock is taken

∗ RX event happens after clock prioritization
– L(a) < L(b)⇒a → b notably - a||b possible

• Vector Clocks

– Each process maintains a vector of clocks per process, all initialized to 0
– Personal clock is incremented before timestamping, vector is sent w/ message
– On message RX, the clock for that process is max’d w/ the received clock

∗ Receive event is still timestamped w/ our clock

• We create a notion of comparison for different vector clocks

– A = B ≡ A[i] = B[i]∀i
– A ≤ B ≡ A[i] ≤ B[i]∀i
– A < B ≡ A ≤ B ∧ ∃j, A[j] < B[j]

• If A < B ⇒ a → b

– If A = B or none of the ordering relations hold, then a||b

• Timestamp Tradeoffs

– Physical timestamp imputes absolute ordering but requires strict clock sync
– Lamport’s timestamps will sometimes conflate a causal and concurrent relation
– Vector timestamps capture all causal relations but require big messages

10

5 State and Snapshotting
• Before we talked about processes having state

– Channels can also have state (like message channels)
– They need to know pending messages - this channel state can be computed from proc

states

• Global snapshotting is useful for checkpointing, finding unreferenced objects, deadlock detec-
tion, and debug

– Encompasses state of each process and channel in system at a certain time - hard to
capture though

– If snapshots are done relative to physical time, then clock synchronization becomes an
obvious problem

• Can use some terminology to solidify our discussion of state

– history(pi) or hi is all the events of process in a list
– prefix history(pki) or hki gives first k events for process
– ski gives the state of a process after k events

• Slightly different terminology when dealing with global state (when do we pull state for each
process?)

– A cut refers to taking prefix history of each process up to a point ci (differs per process)
– The frontier of a cut refers to the set of most recent event per process before the cut
– The global state of a cut S is pretty obviously derived

• A cut is called consistent iff
∀e ∈ C(f → e ≡ f ∈ C)

– Effectively, the cause of each event in the cut should also be in the cut
– It’s okay if a causal event hasn’t fully propagated yet when the cut is made

• A global state can be consistent iff it corresponds to a consistent cut

• Chandy-Lamport Algorithm: records a global snapshot with consistent state, identifies a
consistent cut to do so

– Corresponding state at each process is recorded once cut is identified
– Models any two processes as having two one-way FIFO channels

∗ messages all arrive in one piece, without duplication
∗ assume no channel failures or process failures either

– Any process can initiate the algorithm, but its effects are relevant to every process

• CLA steps

11

– Initiator should record their own state and creates a marker message - it sends this to
all orhter processes

– When a process receives the marker for the first time, it records its state, then sends the
marker to all other processes

– Processes will keep recording messages they receive on other channels until they receive
the marker from it

– The algorithm terminates when every process receives a marker on every one of their
channels

• Liveness is the guarantee that something ”good” will eventually happen

– This is satisfied if any possible continuance of execution will hit a state that is live at
some point

• Safety is the guarantee that nothing ”bad” will every happen

– This is satisfied if every possible continuance of execution will never hit a state that is
unsafe

• Stable global predicates refer to the idea that once a system is live, it is live forever afterwards

– Every reachable state must be alive

6 Multicast
• There are 3 big communication modes

– Unicast is a 1-to-1 process communication scheme
∗ Best effort, makes ”intact” guarantees but not reliability guarantees
∗ Guarants inorder delivery

– Broadcast refers to a 1-to-all scheme
– Multicast refers to a 1-to-group scheme - this group is more granular than broadcast

∗ Ideally, we desire reliability and ordered transmission

• For an application, we consider the multicast protocol to have two interface functions

– multicast(g, m) sends a message to a process group g, where g includes the current
process

– deliver(m) receives a message from the multicast protocol to the current application

• Basic Multicast or B-Multicast is straightforward

– Simply use unicast while iterating over each of the processes in the group
– We consider B-deliver to be identical to a unicast receive

• Reliable Multicast or R-Multicast expands on this implementation

12

– We wish to achieve some reliability conditions
∗ Integrity: a correct process will deliver a message at most once
∗ Validity: if a correct process multicasts, it will eventually self-deliver the message
∗ Agreement: if a correct process delivers a message m, then all other processes in the

sent group will eventually deliver it (all-or-nothing)
– R-multicast acts as a user of the B-multicast interface to achieve reliability

∗ On message delivery, if it is a new message, we take note
∗ We then re-multicast that message via B-multicast to the rest of the group

• There are 3 popular multicast orderings

– FIFO: A single sender’s messages are delivered inorder w.r.t each other at all receivers
– Causal Order: multicasts sending causally related events will be delivered in an order

obeying the relation
∗ Guarantees FIFO ordering

– Total Order: All processes receive all multicasts in the same order (the messages have
a strict order)

∗ Does not pay attention to order of multicast sending, and has no relation to causal
ordering

∗ May require delay of delivery at some processes

• To FIFO-order multicast, we implement a layer in between the B-multicast and application
interfaces

– Each receiver maintains a per-sender sequence number - messages are FIFO’d if there is
a jump

– Sequence number incremented as contiguous messages get popped off the FIFO
– To make this reliable just use R-multicast instead of B-multicast, hook FIFOing on

R-deliver

• Similar approach to guarant Total Ordering on multicast, need a sequence number

– Can either use a centralized sequencer or a decentralized mechanism (ISIS)

• Centralized Sequencer

– Process elected to act as leader/sequencer
– Multicast messages sent to group and sequencer- this will maintain a global sequence

number S
– When the sequencer receives message, it re-multicasts with a sequence number attached

• ISIS

– Sender multicasts to the group - receivers will reply with a proposed priority
∗ Proposal must be larger than all observed/proposed priorities thus far

13

– Message is stored in a priority queue - agreed or proposed, whichever is known
– Sender will take maximum across group and re-multicast message ID with the agreed

prio
– Receivers can use this multicast to finalize the message priority, deliver when eligible

• Causal Ordering is most similar to FIFO’s implementation

– You still have a vector of per-sender sequence numbers, but you send ”vector timestamps”
– Check if this is ≤ compared to all other most vector timestamps from senders, deliver if

so

• Important to consider more efficient mechanism when sending messages across the network

– Looped unicast propagates a message to the same network node multiple times

• Can instead do tree-based multicast - construct an MST of network nodes, send unicast along
tree

– If we construct a tree w/ the routers, we can do an IP-based multicast
– If a node fails, then we have to consider the overhead of tree construction

• We can also use the gossip approach

– Probabilistically send message to a couple of nodes, and do the same when you receive
one

– No guarantees on complete network propagation, but it’s good enough for many appli-
cations

7 Mutual Exclusion
• Usual 391 crap on mutually exclusive access and critical sections

– On a single system, we can use semaphores - this is a shared var though
– Need to somehow support the idea of mutexes in a distributed system

• Any algorithm for mutual exclusion must make 3 guarantees

– Safety: Only one process should execute on shared state at a time
– Liveness: Every request access to the shared state is eventually guaranteed
– Ordering: requests are granted in the order they’re made

• Central Server Algorithm

– Elect a leader server - keeps a queue of waiting requests from processes attempting CS
access

– Keeps a token that, when sent, allows holder to make access to the shared state
– Processes can enter to request a token and exit to award the token back to server

14

– May not necessarily guarantee ordering, which is fine, that one is optional
– Does not require a lot of bandwidth, relatively good client delay, and tolerable synchro-

nization delay
– Leader can bottleneck this algorithm, and acts as a single failure point

• Ring-Based Algorithm

– N processes organized in a ring - each process can send a message to next one in ring
– 1 token is being passed - if you are not using it, pass it along immediately
– Still does not guarantee ordering, and bandwidth is higher (has idle bandwidth)
– Potentially better delay if there is high contention on the shared state
– Still O(n) for client/synchronization delay

• Ricart-Agrawala Algorithm

– Does not use a token-based approach - depends on causality and multicast
– Lower CS waiting time compared to the ring-based algorithm
– On enter, set state to wanted, and multicast a timestamped request
– Once all other processes respond with a reply of valid timestamp, you are active
– Buffer any requests while waiting or held, reply to them all in order once done w/ CS

∗ When holding, reply to requests w/ smaller vector timestamp than our ”want” to
avoid deadlock

• RA Algo guarantees all 3 of our desired qualities in a mutex algorithm!

– High bandwidth, but O(1) client and synchro delays!

• Maekawa’s Algorithm

– Improves on RA by only requiring replies from some processes - specifically a ”voting
set”

∗ Each process is in its own voting set
∗ Voting set formed by making a square array w/ processes
∗ The row/column of curr proc in the array above is voting set
∗ Each voter gives permission to one process at any given time

· Process needs permission from its entire voting set
∗ On enter, process multicasts a request and waits for all other voters to reply
∗ On exit, a release is multicasted to the voter set
∗ When a request is received, send reply if no other requests active, else buffer it

· On release, send a reply to the first valid request in buffer
∗ Guarants safety, but can have liveness and ordering issues (potential deadlock)

15

8 Leader Election
• Many algorithms refer to a central or ”leader” process/server

– How to elect or decide which server this is?
– How to replace the leader in failure cases?

• Election algorithm will elect a non-faulty leader and ensure consensus on this leader

• Election Algorithm Criteria

– Any process can initiate election, but at most one election at a time
– If multiple processes initiate an election, the elections together should lead one leader
– Election process shuld be symmetric regardless of the initiator
– Election algorithms must always elect a valid leader for safety
– Election algorithms must always elect a leader and terminate the run for liveness

• Ring Election Algorithm

– Send election message to next process in the ring
– On election message receive, send another one to the next in ring

∗ Elect yourself if attribute greater, else elect the predecessor
– Message propagates around the ring until it reaches the ”leader”

∗ If received message elects you, then the ring has terminated
– Only send election message once to avoid the ”tie” case
– Up to O(n2) messages, but O(n) turnaround guaranteed

• Bully Algorithm

– Send election message to processes with higher priority/process id
– If disagree received, stand down, and wait for coordinator message

∗ If timeout, you are fucked! Start another election
– If election received, respond with disagree, start your own election
– If timeout after election, you are the leader! Send coordinator downwards

9 Transactions and Concurrency
• A transaction is a series of operations executed by a client on a server (or servers)

– Generally separates into read/write - overwriting or getting state

• Transactions have some properties by design

– We want atomicity - happens fully, or not at all (is an ”unbreakable” unit)
∗ Transactions will commit to confirm tentative updates, or abort to rollback

16

– We want to be consistent with any required rules
∗ Check validity of tentative values at commit time, abort if anything violated

– Multiple transactions should be isolated, with no unintended cross-talk
∗ Can either execute all transactions serially or have concurrency w/ serial equivalence
∗ Can have pessimistic concurrency control w/ locks or optimistic concurrency control

w/ a commit-time check for serial equivalence
– We want our values to be durable after a crash for persistence

∗ Need some sort of permanent storage and replication across servers
– Generally abbreviated to ACID

9.1 Locking for Isolation
• We can either have global locks or R/W locks - we prefer the latter for better throughput

– Acquire reader to read, writer to write – simple enough

• For any transaction, locks should all be acquired in phase 1, and all released in phase 2

– Can lead to a deadlock if phase 1 allocates a reader lock and then a writer lock in two
processes ast the same time

– Generally – deadlock happens if 3 conditions hold (this is an iff)
1. Some objects accessed in exclusive lock modes
2. Transactions holding locks are not preempted
3. There is some circular wait cycle in the wait-for-graph

∗ What you like to think about as ”cross-dependencies”

• Deadlock can be avoided!

– Lock all objects atomically in the beginning - you will get everything in one shot, or wait
a while

– You can timeout the transaction if lock cannot be acquired - though this can cause
inefficiencies

– Check wait-for graph periodically for cycles (and therefore, deadlocks)
∗ Can abort transaction(s) in this cycle if found to break loop

9.2 Opimistic Concurrency Control
• Optimal concurrency, since many things can just run in parallel

– You can think of this like a fire & forget scheme
– Used by many big companies’ apps and KV stores
– Better than pessimistic when conflicts are rare

• First Cut Approach

17

– Write and read objects freely, but check for equivalence at commit
– If a transaction is aborted because of inconsistency, rollback state
– On rollback, track down any error propagated transactions, nuke those too

∗ We call these cascading aborts – these are recursive, and screw with perf

• Timestamped Ordering

– Each transaction gets a timestamp ID
– Check to make sure that (on write) data isn’t clobbered before lower timestamp access,

read isn’t clobbered by higher timestamp
– Abort if any rules are violated (no shit, sherlock)
– Check slides for actual rules idfk

9.3 Distributed Transactions
• Standard ACID challenges are still there, but A/I are now way harder

– You need atomicity and isolation between multiple servers!

• Atomicity reduces down to the consensus problem (also called atomic commit)

– Need to ensure that all servers commit T, or no servers commit T
– We can have a coordinator server that initiates the transaction – can be separate, or an

object-haver
– Can have multiple coordinators handling multiple transactions

• One-Phase Commit: client relays commit/abort to coordinator. Coordinator tells everyone
else

– Server w/ object can’t really tell coordinator whether it can abort (consistency can fail)
– Server can crash before receiving the commit, with some updates still in its memory
– Big issue – no reciprocity in communication

• Two-Phase Commit

– Coordinator sends transaction to other servers, they all reply Y/N
– If coordinator sees that all other servers can commit da ting, tell everyone to commit
– If timeout or animous, tell everyone to abort (prevents OOM)
– For crash safety, save anything tentative into storage before initial reply
– Coordinator logs all decisions and tx/rx on disk – can recover log state
– Server can poll coordinator to check for its failure – it will block until the coord receives

• Isolation falls into two points of responsibility

– Each server applies concurrency control to its objects

18

– Together, servers must guarant serial equivalence via per-server timestamped ordering
– Aborts from the timestamped ordering will be relayed to coordinator, per Two-Phase

Commit
– Locking will be handled locally per-server
– Each server reports its wait-for relations to the coordinator, which constructs a global

graph

• So far we’ve assumed a central coordinator, which causes scalability issues failure centraliza-
tion

• Deadlocks can be detected via edge chasing

– Probe messages are forwaded to servers in the edges of the wait-for graph
– If a server who probed receives the message back, then there is a cycle!
– By using local wait-for relationships, globally the forwarding creates a coherent wait-for

graph

• Edge Chasing Phases

– Initiation is when a server starts detection because it knows that a transaction is waiting
on another

∗ Detection initiated by sending probe messages w/ the wait-for relationship to other
servers

– In detection servers will receive probes and determine if a deadlock is occurring (who
am I waiting for) or if someone else should receive the probe

– In resolution the cycle is detected, and 1+ transactions are aborted to free contested
lcoks

• Susceptible to phantom deadlocks (false positives) because ”wait-for edges” may have disap-
peared

– Cycle can be detected by using stale edges to close the cycle, leading to spurious aborts

• Transactions can be sharded (distributed) or replicated across servers

– A combination of both even!
– Sharding improves load-balancing/scalability, replication improves fault-tolerance and

availability

• Node failures are common – think about the Google story from JDean!

– Good to replicate data so that you can be resilient to failures
– All replicas should be consistent, and the client should not think replicas are different

objects
– Updates can be propagated to the replica via Active Replication or some Passive Repli-

cation

19

∗ Active updates all identically, passive has some ”leader” replica
∗ Both require some state machine, with multiple copies to account for replicas

• One-Copy Serializability: A concurrent transaction execution on a replicated database is OCS
if equivalent to a serial execution of transactions over a single logical copy of the database

– TL;DR: Correctness condition is serial equivalence

• We use two-level operation (2PC per object) and Paxos/Raft among replicas

– Consensus needed to agree on lock acquisition and operations, or when committing
transactions

• High-level: 2PC is used between replica groups, with Paxos/Raft used per-group

– Coordinator leader sends Prepare message to leader of each group
– Paxos used per-group to commit prepare to group logs (Paxos prepare-response-accept

cycle)
– On commit of prepare, can respond to the coordinator leader, which then uses Paxos

in its group to commit the decision
– Coordinator leader will now send a 2PC commit to the leader of each replica group
– Replica group leaders use Paxos to process commit message, send back commit ok af-

terwards

10 Key-Value Stores
• Databases aren’t great for modern usecases

– Yes, you have like MySQL and shit w/ structured tables
– Bad for random R/W accesses, it’s unstructured, and rare JOIN cmds

• By contrast, KV Stores are like a dict - get/put model

– Called NoSQL Data Stores sometimes

10.1 Distributed Hash Tables (DHT)
• Chord is an early popular algorithm for this shit

– It can load-balance, is decentralized, is scalable, is always available, and is flexible in
naming keys

• Chord Hashing

– Uses IP and Port through SHA to generate a bitstring, truncates it to some 2m bits
– This bitstring is a ”peer ID”, which maps to a point on a logical circle
– Use same ID’ing algorithm on K-V pairs – store at the key’s successor node (inclusive)

20

• For lookups in Chord, we have two obvious options

– All-to-All connections (shitty routing tables)
– Ring succession (simple routing, but long transmission times)
– We make a third option (which is actually used) – fingering

• Each Chord node keeps finger table w/ m entries

– An entry i will be successor(n+ 2i) for node n

– Do some funny binary number addition bullshet to find an arb node
– Always do the lowest jump that you can guarantee won’t overshoot the element
– Informally – lowest finger entry that doesn’t go past element

∗ If k is in the range between node and next(k), just pull the next node directly
– Funny binary number addition bullshet means lookup is O(log(n))

• This all sounds well and good, but what to do for failures?

– Need to update our fingering
– Lookups might fail/timeout before the tables are fixed
– Want to have a system robust to failures while we re-finger

• Simple solution (ish) - keep some r successor entries (can do multi-lookup)

– Also replicate data at these r entries at all time for fault tolerance
– Need to update successors, fingers, and keys whenever nodes fail, leave, or join!

• We maintain two invariants to keep protocol correctness even under high churn

– Each node n correctly maintains its direct successor next(n)
– The node successor(k) is responsible for key k

• Stabilization Protocol

– When n joins, initialize its ring successor next(n) and notify them
– If notified by a node, and your current ”previous” node is unitialized or the pinger is

between your current predecessor and yourself, then prev becomes the piner

• Each node will periodically run stabilization to determine correct node progression (prev(next(n))),
update next accordingly, then ping new next node

– Each node n also periodically updates a random finger

• Given failure detectors, we keep knowledge of r ring successors, and the predecessor of a failed
node can update its ring successor

• Note that lookups can fail while Chord stabilizes, but the failures are transient and not
permanent

– Application can re-attempt, and once Chord stabilizes it will be serviced

21

10.2 Cloud KV Stores
10.2.1 Map/Reduce

• Need funny programming models that inherently have…

– Fault tolerance
– Replication and consensus
– Cluster scheduling
– Map/Reduce provides this

• Map/Reduce is a LISP-inspired programming model

– Handles the creation of map and reduce via application frameworks
– The application frameworks will handle cluster management via resource managers
– The user supplies a map function to generate a list of K/V pairs from a single K/V
– This intermediate pair gets passed into a reduce function, which will generate a K/V

result
– The set of K/V results is considered the output of a Map/Reduce

• You can chain multiple Map/Reduce pairs to create more powerful tasks

– Can specify how many maps and reduces you have, without changing the programs
– Inherently masks the underlying complexity for parallelism
– Reduces should only start after all Maps are done

• Map/Reduce Execution

1. Parallelize Map
– Can add ”partition” values to the Map to stripe across nodes

2. Transfer Map to Reduce w/ the shuffling
– There should be barrier synchro to wait until it’s all ready

3. Parallelize Reduce
4. Implement storage for the Map I/O and Reduce I/O

– Overall I/O is on distributed FS, but intermediate I/O is local FS

10.2.2 Job Scheduling

• Many things to do – when to do them? What order?

– Ideally, we schedule to have good throughput, high resource utilization, and fairness

• Some basic-ass scheduling algorithms

– FIFO or FCFS: lower tail completion time
– Shortest Remaining Processing Time (SRPT) or SJF: lower average completion time

22

∗ Generally optimal, but hard to know runtime prior to completion
∗ Is technically a subcase of priority scheduling

– Round Robin: better task fairness

• Elasticity: a job queue can exceed its resource limits if more are free/idle

• Scheduling gets harder when different jobs have varying multi-resource requirements

– How to be ”fair” if time is not the only variant resource?
– UC Berkeley proposed Dominant Resource Fairness (DRF)

• DRF: For any given job, the %age of the dominant resource that each job (cluster-wide) is
identical for all jobs

– Examples of Resources: CPU, RAM, Network, Disk Bandwidth
– May not always equalize if a job’s demand is met and it does not need more shit, or if

equations lead to weird task counts

10.2.3 Large-Scale Implementation

• Centers on analyzing Cassandra

• Design requirements of a large Distributed KV Store?

– Low total cost of operation (TCO)
– Fewer system administrators and incremental scalability (add more machines or more

powerful machines easily)
– Should be fast (high throughput, low latency)
– Avoid single point of failure (multi-node replication)

• Overall: high performance, low cost, scalable

• CAP Theorem

– Consistency means that all reads return the latest written value by any client
– The system should be available - respond to any request on a non-failing node quickly
– Should be partition-tolerant in the present of network partitions

∗ Network Partition means that two nodes effectively cannot speak to each other
– We can only guarantee a maximum 2 out of the 3 above properties

• If partition-tolerant, we must either be consistent by centralizing requests or accepting multi-
node inconsistency

– Consider data replicated across two nodes for this example

• The NoSQL explosion began as a result of the CAP tradeoff

– CP: HBase, HyperTable, BigTable, Spanner

23

– PA: Cassandra, RIAK, DynamoDB, Voldemort
– CA: Non-replicated RDBMS like SQL (to some degree)

• Cassandra is an open-source distributed KV stores for uni and multi datacenter applications

– Cassandra uses a ring-based distributed hash table (DHT), but no finger tables or routing
tables

– Each datacenter’s servers are modeled as a single ring for Cassandra

• A partitioner is used to map keys to various servers via a hash, as well as determining primary
replicas

– Can either use Chord partioning or ByteOrderedPartioner (assign ranges of keys to
servers)

– ByteOrderedPartitioner is useful for range queries, for example a set of books in a certain
code range

• We can also have a choice in replication strategy

– SimpleStrat: First replica placed based on partioner, replicas then clockwise in relation
to primary

– NetworkTopologyStrategy: Useful for multi-DC deployments, w/ 2-3 replicas per data-
center

∗ On each datacenter, you replica according to partitioner, then go clockwise until
you find a different rack

• Cassandra writes are designed to be lock-free and fast (reads/disk seeks unneeded!)

– Client sends write to 1 coordinator in the cluster (coordinator can be per-key, per-client,
or per-query)

– Coordinator usese partitioner to query all replica nodes, waits for X responses to return
an ack

∗ Can choose X to be any one, a majority, all of them, etc… depends on how consistent
we need our system!

• Hinted Handoff : Coordinator can buffer writes for a while if a replica (or all of them) are
down

– Writes are logged in disk commit log to have failure-recovery
– Memtable is an in-memory representation of KV pairs (effectively a cache searched by

key, is write-back)
∗ Changes are made to memtable, not directly to disk

– When memtable is full/old, flush it to the disk into a sorted string table (SSTable) –
K/V pairs sorted by key

– SSTables will have some auxiliary lookup mechanism (like a bloom filter) to make it
faster

24

• Data updates will acumulate over many SSTables over time – these need to all be compacted

– Compaction process must run periodically per-server

• Deletions are not done right away, we instead write a tombstone

– This is detected during compaction, which will trigger deletion on the underlying table

• Reads are done by contacting X same-rack replicas, prioritizing faster-response replicas when
querying

– When X respond, then the newest-timestamped value is returned to the client
– Coordinator will also fetch values from off-rack replica, and will do a background consistency-

check
– Read repair is triggered if consistency check fails, bringing all replicas up to date even-

tually

• During a read, any given replica will check the Memtables and then the SSTables

– If a row is split between SSTables pre-compaction, then the iterative nature will make
it slower than a write

• Cassandra will elect a per-DC coordinator to coordinate data between datacenters

– Election is Zookeper, a variant of the Bully algorithm

• X parameter is based on the consistency spectru, where relaxed consistency requirements will
lead to faster R/W access times

– Cassandra offers eventual consistency – if a key stop is written, then all replicas will
eventually converge

• Cassandra segments into consistency levels based on the X value, client can pick its consis-
tency level

– Any: any server can be used for R/W, with coordinator caching the write and replying
quickly

– All: All replicas are contacted for an R/W, which is slow but consistent
– One: At least one replica must be contacted, is faster than All but is not failure-tolerant
– Quorum: Requires a quorum across all replicas in all DCs

∗ Typically quorum is a majority – we require that any two quorums intersect, so you
are always guaranteed to see up-to-date data

∗ Faster than All but you still have strong consistency guarantees
∗ This is what Cassandra usually uses!

• Quorum varies between reads and writes

– Read
∗ Client specifies R, which is at most the total number of key replicas

25

∗ Coordinator waits for R replicas to respond before sending result
∗ Coordinator checks for consistency on the other N −R replicas and will read-repair

if needed
– Write

∗ Client specifies W which is at most the total number of replicas
∗ Client writes new value to all replicas, returns when it hears from all
∗ This is the default strategy

• Consistency is met when W +R > N and W > N
2

– Guarantees that the R/W quorums intersect somewhere, and that two conflicting writes
don’t happen simultaneously

– Can choose the W,Rbased on balance between consistency, access types, and perfor-
mance!

• Cassandra clients can also pick quorums between all replicas, per-DC quorum, and quorum
only in the coordinator’s DC

– For obvious reasons, the third is the fastest. The 2nd lets you have hierarchical replies,
effectively

• Cassandra’s eventual consistency guarantee means that client may receive stale data for a
couple requests, but eventually system will be internally coherent

– This works especially well when systems have low write traffic compared to reads

• Switching gears, leader election is something we need state for

– Who is currently in our cluster (e.g who can become the new leader if a server fails?)
– Need to update some internal membership list as servers join/leave/fail
– Membership list is gossipped between intra-cluster nodes – nodes marked as fail if a

heartbeated list is too old

• Modern KV stores promise different properties than Relational Database Management Sys-
tems (RDBMS)

– RDBMS provide ACID, KV stores provide Basically Available Soft-state Eventual Con-
sistency (BASE)

– Modern stores prefer availability for performance over consistency
– RDBMS like MySQL will have 300ms/350ms for R/W, while Cassandra has 15ms/0.12ms

R/W

26

	System Model
	Communication
	Modeling Synchronicity
	Component Failures
	Fancy Heartbeating

	Time
	Consensus
	Paxos
	Raft
	Blockchain

	Timestamps and Ordering
	State and Snapshotting
	Multicast
	Mutual Exclusion
	Leader Election
	Transactions and Concurrency
	Locking for Isolation
	Opimistic Concurrency Control
	Distributed Transactions

	Key-Value Stores
	Distributed Hash Tables (DHT)
	Cloud KV Stores
	Map/Reduce
	Job Scheduling
	Large-Scale Implementation

